亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges

不可用 工作流程 人工智能 化学空间 鉴定(生物学) 产量(工程) 分子机器 机器学习 纳米技术 化学 计算机科学 生化工程 材料科学 工程类 药物发现 可靠性工程 数据库 生物 植物 冶金 生物化学
作者
Sukriti Singh,Raghavan B. Sunoj
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (3): 402-412 被引量:23
标识
DOI:10.1021/acs.accounts.2c00801
摘要

ConspectusIn the domain of reaction development, one aims to obtain higher efficacies as measured in terms of yield and/or selectivities. During the empirical cycles, an admixture of outcomes from low to high yields/selectivities is expected. While it is not easy to identify all of the factors that might impact the reaction efficiency, complex and nonlinear dependence on the nature of reactants, catalysts, solvents, etc. is quite likely. Developmental stages of newer reactions would typically offer a few hundreds of samples with variations in participating molecules and/or reaction conditions. These "observations" and their "output" can be harnessed as valuable labeled data for developing molecular machine learning (ML) models. Once a robust ML model is built for a specific reaction under development, it can predict the reaction outcome for any new choice of substrates/catalyst in a few seconds/minutes and thus can expedite the identification of promising candidates for experimental validation. Recent years have witnessed impressive applications of ML in the molecular world, most of them aimed at predicting important chemical or biological properties. We believe that an integration of effective ML workflows can be made richly beneficial to reaction discovery.As with any new technology, direct adaptation of ML as used in well-developed domains, such as natural language processing (NLP) and image recognition, is unlikely to succeed in reaction discovery. Some of the challenges stem from ineffective featurization of the molecular space, unavailability of quality data and its distribution, in making the right choice of ML model and its technically robust deployment. It shall be noted that there is no universal ML model suitable for an inherently high-dimensional problem such as chemical reactions. Given these backgrounds, rendering ML tools conducive for reactions is an exciting as well as challenging endeavor at the same time. With the increased availability of efficient ML algorithms, we focused on tapping their potential for small-data reaction discovery (a few hundreds to thousands of samples).In this Account, we describe both feature engineering and feature learning approaches for molecular ML as applied to diverse reactions of high contemporary interest. Among these, catalytic asymmetric hydrogenation of imines/alkenes, β-C(sp3)–H bond functionalization, and relay Heck reaction employed a feature engineering approach using the quantum-chemically derived physical organic descriptors as the molecular features─all designed to predict the enantioselectivity. The selection of molecular features to customize it for a reaction of interest is described, along with emphasizing the chemical insights that could be gathered through the use of such features. Feature learning methods for predicting the yield of Buchwald–Hartwig cross-coupling, deoxyfluorination of alcohols, and enantioselectivity of N,S-acetal formation are found to offer excellent predictions. We propose a transfer learning protocol, wherein an ML model such as a language model is trained on a large number of molecules (105–106) and fine-tuned on a focused library of target task reactions, as an effective alternative for small-data reaction discovery (102–103 reactions). The exploitation of deep neural network latent space as a method for generative tasks to identify useful substrates for a reaction is demonstrated as a promising strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张子捷发布了新的文献求助10
2秒前
彭于晏应助田柾国采纳,获得10
5秒前
文欣完成签到 ,获得积分10
6秒前
superZ完成签到 ,获得积分10
9秒前
汉堡包应助张子捷采纳,获得10
9秒前
jasam3514完成签到,获得积分10
11秒前
11秒前
24秒前
25秒前
28秒前
热情的安彤完成签到,获得积分20
38秒前
阿治完成签到 ,获得积分10
41秒前
48秒前
51秒前
酷波er应助leonzhou采纳,获得10
51秒前
开霁完成签到,获得积分10
55秒前
su发布了新的文献求助10
56秒前
研友_VZG7GZ应助123采纳,获得10
58秒前
1分钟前
1分钟前
义气的元柏完成签到 ,获得积分10
1分钟前
猫先生发布了新的文献求助10
1分钟前
cris完成签到 ,获得积分10
1分钟前
1分钟前
cris关注了科研通微信公众号
1分钟前
su完成签到,获得积分10
1分钟前
Tim完成签到 ,获得积分10
1分钟前
猫先生完成签到,获得积分10
1分钟前
1分钟前
zzcc发布了新的文献求助10
1分钟前
程风破浪发布了新的文献求助10
1分钟前
是我不得开心妍完成签到 ,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
尼古丁的味道完成签到 ,获得积分10
1分钟前
程风破浪完成签到,获得积分10
1分钟前
zzcc完成签到,获得积分10
1分钟前
科研通AI2S应助谦让冰真采纳,获得10
1分钟前
stay完成签到,获得积分20
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162265
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899578
捐赠科研通 2472567
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142