亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges

不可用 工作流程 人工智能 化学空间 鉴定(生物学) 产量(工程) 分子机器 机器学习 纳米技术 化学 计算机科学 生化工程 材料科学 工程类 药物发现 可靠性工程 数据库 生物 生物化学 植物 冶金
作者
Sukriti Singh,Raghavan B. Sunoj
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (3): 402-412 被引量:59
标识
DOI:10.1021/acs.accounts.2c00801
摘要

ConspectusIn the domain of reaction development, one aims to obtain higher efficacies as measured in terms of yield and/or selectivities. During the empirical cycles, an admixture of outcomes from low to high yields/selectivities is expected. While it is not easy to identify all of the factors that might impact the reaction efficiency, complex and nonlinear dependence on the nature of reactants, catalysts, solvents, etc. is quite likely. Developmental stages of newer reactions would typically offer a few hundreds of samples with variations in participating molecules and/or reaction conditions. These "observations" and their "output" can be harnessed as valuable labeled data for developing molecular machine learning (ML) models. Once a robust ML model is built for a specific reaction under development, it can predict the reaction outcome for any new choice of substrates/catalyst in a few seconds/minutes and thus can expedite the identification of promising candidates for experimental validation. Recent years have witnessed impressive applications of ML in the molecular world, most of them aimed at predicting important chemical or biological properties. We believe that an integration of effective ML workflows can be made richly beneficial to reaction discovery.As with any new technology, direct adaptation of ML as used in well-developed domains, such as natural language processing (NLP) and image recognition, is unlikely to succeed in reaction discovery. Some of the challenges stem from ineffective featurization of the molecular space, unavailability of quality data and its distribution, in making the right choice of ML model and its technically robust deployment. It shall be noted that there is no universal ML model suitable for an inherently high-dimensional problem such as chemical reactions. Given these backgrounds, rendering ML tools conducive for reactions is an exciting as well as challenging endeavor at the same time. With the increased availability of efficient ML algorithms, we focused on tapping their potential for small-data reaction discovery (a few hundreds to thousands of samples).In this Account, we describe both feature engineering and feature learning approaches for molecular ML as applied to diverse reactions of high contemporary interest. Among these, catalytic asymmetric hydrogenation of imines/alkenes, β-C(sp3)-H bond functionalization, and relay Heck reaction employed a feature engineering approach using the quantum-chemically derived physical organic descriptors as the molecular features─all designed to predict the enantioselectivity. The selection of molecular features to customize it for a reaction of interest is described, along with emphasizing the chemical insights that could be gathered through the use of such features. Feature learning methods for predicting the yield of Buchwald-Hartwig cross-coupling, deoxyfluorination of alcohols, and enantioselectivity of N,S-acetal formation are found to offer excellent predictions. We propose a transfer learning protocol, wherein an ML model such as a language model is trained on a large number of molecules (105-106) and fine-tuned on a focused library of target task reactions, as an effective alternative for small-data reaction discovery (102-103 reactions). The exploitation of deep neural network latent space as a method for generative tasks to identify useful substrates for a reaction is demonstrated as a promising strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助李涛采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
万能图书馆应助小路采纳,获得10
50秒前
58秒前
李爱国应助orangel采纳,获得10
1分钟前
1分钟前
1分钟前
怕黑行恶发布了新的文献求助10
1分钟前
orangel发布了新的文献求助10
1分钟前
orangel完成签到,获得积分10
1分钟前
2分钟前
传奇3应助烨枫晨曦采纳,获得10
2分钟前
2分钟前
Ava应助ChloeF采纳,获得10
2分钟前
烨枫晨曦发布了新的文献求助10
2分钟前
Jason完成签到,获得积分20
2分钟前
梦璃完成签到 ,获得积分10
2分钟前
Jason发布了新的文献求助10
2分钟前
ChloeF发布了新的文献求助10
2分钟前
2分钟前
Jasper应助Jason采纳,获得10
2分钟前
卓天宇完成签到,获得积分10
2分钟前
2分钟前
3分钟前
SUN发布了新的文献求助10
3分钟前
小路发布了新的文献求助10
3分钟前
张美环完成签到 ,获得积分10
3分钟前
ChloeF发布了新的文献求助10
3分钟前
Nature2025完成签到 ,获得积分10
4分钟前
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
4分钟前
肉丸完成签到 ,获得积分10
5分钟前
小鱼完成签到 ,获得积分10
5分钟前
孙燕应助科研通管家采纳,获得30
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
小新小新完成签到 ,获得积分10
6分钟前
我是老大应助boluohu采纳,获得10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302798
求助须知:如何正确求助?哪些是违规求助? 4449837
关于积分的说明 13848726
捐赠科研通 4336166
什么是DOI,文献DOI怎么找? 2380799
邀请新用户注册赠送积分活动 1375751
关于科研通互助平台的介绍 1342107