Experimental Evaluation of Low Fidelity Models on Co-Kriging Metamodeling of Global Structural Response through Real-Time Hybrid Simulation

元建模 克里金 不确定度量化 计算机科学 忠诚 变异函数 算法 数学优化 机器学习 数学 电信 程序设计语言
作者
Cheng Chen,Yanlin Yang,Hetao Hou,Changle Peng,Weijie Xu
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:149 (4)
标识
DOI:10.1061/jsendh.steng-11352
摘要

Real-time hybrid simulation (RTHS) provides a cyber-physical technique for large- or full-scale experiments in size limited laboratories when parts of the structure are difficult for accurate modeling. Traditional practice of RTHS assumes deterministic structural properties therefore could not account for uncertainties in global response prediction in an efficient and effective way. Previous studies have shown that metamodeling enables efficient uncertainty quantification through limited number of expensive physical experiments or computational simulation. More recent studies indicate that multifidelity Co-Kriging can achieve better accuracy with fewer experiments or less simulation. This study presents an experimental study of the influence of low-fidelity model accuracy on Co-Kriging metamodeling for uncertainty quantification. Laboratory RTHS through are considered as high-fidelity (HF) simulation and conducted in parallel with low-fidelity (LF) computational simulation of the same structure. The Co-Kriging metamodeling is then applied to integrate multifidelity simulation to render accurate response prediction over the entire sample space of uncertainty input variables. Different parameter values are used for same computational model to emulate different LF simulation for Co-Kriging metamodeling. RTHS tests are conducted for a single-degree-of-freedom (SDOF) structure with self-centering viscous damper (SC-VD). The Co-Kriging metamodels established from experimental results are then evaluated through validation tests and further compared with corresponding Kriging metamodels. A multifidelity Co-Kriging with LF model updating is further proposed to improve the convergence and accuracy in response estimation for uncertainty quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nurzat完成签到,获得积分20
刚刚
Stanley完成签到,获得积分10
1秒前
nnnnnnxh完成签到,获得积分10
1秒前
大个应助weber采纳,获得10
1秒前
Makta发布了新的文献求助10
2秒前
我是老大应助ZT采纳,获得10
2秒前
风中的小丸子完成签到,获得积分10
2秒前
2秒前
dounai完成签到,获得积分10
2秒前
科研通AI2S应助薯条采纳,获得10
2秒前
2秒前
迷路荷花完成签到,获得积分20
3秒前
静然完成签到 ,获得积分10
3秒前
3秒前
bingsu108完成签到,获得积分10
3秒前
4秒前
爱笑的安梦完成签到,获得积分10
4秒前
百甲完成签到,获得积分10
5秒前
Ari_Kun完成签到 ,获得积分10
5秒前
5秒前
yrw关注了科研通微信公众号
5秒前
科研通AI6应助刘唐荣采纳,获得10
6秒前
Owen应助莽哥采纳,获得10
6秒前
单纯的黄蜂完成签到,获得积分10
6秒前
迷路荷花发布了新的文献求助20
7秒前
行毅文发布了新的文献求助10
7秒前
负责冰凡发布了新的文献求助10
7秒前
香蕉觅云应助烟酒僧采纳,获得10
8秒前
自信鞅发布了新的文献求助10
9秒前
幸福的玫瑰应助inno采纳,获得10
9秒前
10秒前
10秒前
中级奥术师完成签到,获得积分10
11秒前
早春完成签到,获得积分10
11秒前
xxxx.发布了新的文献求助30
11秒前
茗牌棉花完成签到,获得积分20
11秒前
11秒前
jiakang完成签到,获得积分10
11秒前
11秒前
科研通AI6应助虚心念桃采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406