Experimental Evaluation of Low Fidelity Models on Co-Kriging Metamodeling of Global Structural Response through Real-Time Hybrid Simulation

元建模 克里金 不确定度量化 计算机科学 忠诚 变异函数 算法 数学优化 机器学习 数学 电信 程序设计语言
作者
Cheng Chen,Yanlin Yang,Hetao Hou,Changle Peng,Weijie Xu
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:149 (4)
标识
DOI:10.1061/jsendh.steng-11352
摘要

Real-time hybrid simulation (RTHS) provides a cyber-physical technique for large- or full-scale experiments in size limited laboratories when parts of the structure are difficult for accurate modeling. Traditional practice of RTHS assumes deterministic structural properties therefore could not account for uncertainties in global response prediction in an efficient and effective way. Previous studies have shown that metamodeling enables efficient uncertainty quantification through limited number of expensive physical experiments or computational simulation. More recent studies indicate that multifidelity Co-Kriging can achieve better accuracy with fewer experiments or less simulation. This study presents an experimental study of the influence of low-fidelity model accuracy on Co-Kriging metamodeling for uncertainty quantification. Laboratory RTHS through are considered as high-fidelity (HF) simulation and conducted in parallel with low-fidelity (LF) computational simulation of the same structure. The Co-Kriging metamodeling is then applied to integrate multifidelity simulation to render accurate response prediction over the entire sample space of uncertainty input variables. Different parameter values are used for same computational model to emulate different LF simulation for Co-Kriging metamodeling. RTHS tests are conducted for a single-degree-of-freedom (SDOF) structure with self-centering viscous damper (SC-VD). The Co-Kriging metamodels established from experimental results are then evaluated through validation tests and further compared with corresponding Kriging metamodels. A multifidelity Co-Kriging with LF model updating is further proposed to improve the convergence and accuracy in response estimation for uncertainty quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不得发布了新的文献求助20
刚刚
夏夏发布了新的文献求助10
1秒前
TongXia发布了新的文献求助10
1秒前
我要读博士完成签到 ,获得积分10
1秒前
完美世界应助cz采纳,获得10
2秒前
静加油完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
F503完成签到,获得积分10
2秒前
han完成签到,获得积分10
2秒前
SciGPT应助hyx采纳,获得10
2秒前
和谐越彬发布了新的文献求助10
3秒前
3秒前
3秒前
缥缈的背包完成签到,获得积分10
3秒前
jiyixiao1完成签到,获得积分10
3秒前
4秒前
lili发布了新的文献求助10
4秒前
可靠的雨筠完成签到,获得积分10
4秒前
科研通AI6应助晓竹采纳,获得10
5秒前
FashionBoy应助Blowga采纳,获得10
5秒前
静加油发布了新的文献求助10
5秒前
大个应助zljgy2000采纳,获得30
5秒前
杨漫漫完成签到 ,获得积分10
5秒前
5秒前
敌敌畏完成签到,获得积分10
6秒前
落叶解三秋完成签到,获得积分10
6秒前
6秒前
打打应助京城不降雪c采纳,获得10
6秒前
6秒前
希望天下0贩的0应助su采纳,获得10
6秒前
CodeCraft应助AY采纳,获得10
7秒前
7秒前
23完成签到,获得积分20
7秒前
葛葛发布了新的文献求助20
7秒前
充电宝应助Wff采纳,获得10
8秒前
8秒前
飘逸楷瑞发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827