亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed graph neural network for spatial-temporal production forecasting

可解释性 过度拟合 工作流程 计算机科学 人工神经网络 网格 图形 数据挖掘 参数统计 人工智能 机器学习 变形 理论计算机科学 数学 统计 几何学 数据库
作者
Wendi Liu,Michael J. Pyrcz
标识
DOI:10.1016/j.geoen.2023.211486
摘要

Production forecast based on historical data provides essential value for developing hydrocarbon resources. Classic history matching workflow is often computationally intense and geometry-dependent. Analytical data-driven models like decline curve analysis (DCA) and capacitance resistance models (CRM) provide a grid-free solution with a relatively simple model capable of integrating some degree of physics constraints. However, the analytical solution may ignore subsurface geometries and is appropriate only for specific flow regimes and otherwise may violate physics conditions resulting in degraded model prediction accuracy. Machine learning-based predictive model for time series provides non-parametric, assumption-free solutions for production forecasting, but are prone to model overfit due to training data sparsity; therefore may be accurate over short prediction time intervals. We propose a grid-free, physics-informed graph neural network (PI-GNN) for production forecasting. A customized graph convolution layer aggregates neighborhood information from historical data and has the flexibility to integrate domain expertise into the data-driven model. The proposed method relaxes the dependence on close-form solutions like CRM and honors the given physics-based constraints. Our proposed method is robust, with improved performance and model interpretability relative to the conventional CRM and GNN baseline without physics constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
gexzygg应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
57秒前
xiaoxinbaba发布了新的文献求助10
1分钟前
科研通AI6应助xiaoxinbaba采纳,获得10
1分钟前
1分钟前
一道光发布了新的文献求助30
1分钟前
大喜喜发布了新的文献求助10
1分钟前
深情安青应助sunfield2014采纳,获得10
1分钟前
Ava应助sunfield2014采纳,获得10
1分钟前
领导范儿应助sunfield2014采纳,获得10
1分钟前
华仔应助sunfield2014采纳,获得30
1分钟前
慕青应助一道光采纳,获得30
2分钟前
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
小榕树完成签到,获得积分10
2分钟前
3分钟前
大西发布了新的文献求助10
3分钟前
Akim应助大西采纳,获得10
3分钟前
可乐完成签到 ,获得积分20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
StonesKing发布了新的文献求助10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
小马甲应助StonesKing采纳,获得10
4分钟前
5分钟前
StonesKing发布了新的文献求助10
5分钟前
NexusExplorer应助StonesKing采纳,获得10
5分钟前
从容海完成签到 ,获得积分10
5分钟前
忘忧Aquarius完成签到,获得积分10
6分钟前
大模型应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
科研通AI6应助调皮千兰采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561501
求助须知:如何正确求助?哪些是违规求助? 4646614
关于积分的说明 14678693
捐赠科研通 4587904
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520