Structural Engineering of Red Luminogens to Realize High Emission Efficiency through ACQ‐to‐AIE Transformation

偶极子 跃迁偶极矩 聚集诱导发射 猝灭(荧光) 材料科学 光致发光 量子产额 发光 转化(遗传学) 光电子学 光化学 化学物理 纳米技术 化学 光学 有机化学 荧光 物理 生物化学 基因
作者
Huaming Sun,Tengfei He,Chuchen Zhang,Shifan Wang,Liming Dong,Zhao Li,Peiyang Gu,Zhe Wang,Guankui Long,Qichun Zhang
出处
期刊:Chemistry: A European Journal [Wiley]
卷期号:29 (26) 被引量:9
标识
DOI:10.1002/chem.202300029
摘要

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴新之发布了新的文献求助10
刚刚
1秒前
称心的海蓝完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
玄叶发布了新的文献求助20
1秒前
1秒前
科研通AI2S应助韩梅采纳,获得10
1秒前
脑洞疼应助栖木采纳,获得10
3秒前
3秒前
dddd完成签到,获得积分10
3秒前
4秒前
4秒前
chennx完成签到,获得积分10
5秒前
哈密瓜发布了新的文献求助10
6秒前
6秒前
浮游应助zou采纳,获得10
6秒前
6秒前
6秒前
阳佟水蓉完成签到,获得积分10
7秒前
克林发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
浮游应助说话请投币采纳,获得10
8秒前
8秒前
过儿完成签到,获得积分10
8秒前
9秒前
能干的荆完成签到 ,获得积分10
9秒前
拼搏的寒凝完成签到 ,获得积分10
9秒前
桐桐应助zhouzhou采纳,获得10
10秒前
啦啦啦完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
XHT发布了新的文献求助10
11秒前
香蕉觅云应助大大大骁采纳,获得10
11秒前
所所应助心行采纳,获得10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907