钙钛矿(结构)
材料科学
开路电压
短路
单层
带隙
光电子学
离子键合
离子
费米能级
电压
纳米技术
化学
结晶学
电气工程
物理
工程类
有机化学
量子力学
电子
作者
Pietro Caprioglio,Joel A. Smith,Robert D. J. Oliver,Akash Dasgupta,Saqlain Choudhary,Michael D. Farrar,Alexandra J. Ramadan,Yen‐Hung Lin,M. Greyson Christoforo,James M. Ball,Jonas Diekmann,Jarla Thiesbrummel,Karl‐Augustin Zaininger,Xinyi Shen,Michael B. Johnston,Dieter Neher,Martin Stolterfoht,Henry J. Snaith
标识
DOI:10.1038/s41467-023-36141-8
摘要
In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI