A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns

地理空间分析 计算机科学 图形 数据挖掘 人工智能 遥感 地理 理论计算机科学
作者
Wang Jifei,Chen‐Chieh Feng,Guan Qun Zhou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 730-730 被引量:4
标识
DOI:10.3390/rs15030730
摘要

Recent research has shown the advantages of incorporating multisource geospatial data into the classification of urban functional zones (UFZs), particularly remote sensing and social sensing data. However, the effects of combining datasets of varying quality have not been thoroughly analyzed. In addition, human mobility patterns from social sensing data, which capture signals of human activities, are often represented by origin-destination pairs, thus ignoring spatial relationships between UFZs embedded in mobility trajectories. To address the aforementioned issues, this study proposed a graph-based UFZ classification framework that fuses semantic features from high spatial resolution (HSR) remote sensing images, points of interest, and GPS trajectory data. The framework involves three main steps: (1) High-level scene information in HSR remote sensing imageries was extracted through deep neural networks, and multisource semantic embeddings were constructed based on physical features and social sensing features from multiple geospatial data sources; (2) UFZ mobility graph was constructed by spatially joining trajectory information with UFZs to construct topological connections between functional parcel segments; and (3) UFZ segments and multisource semantic features were transformed into nodes and embeddings in the mobility graphs, and subsequently graph-based models were adopted to identify UFZs. The proposed framework was tested on Zhuhai and Singapore datasets. Results indicated that it outperformed traditional classification methods with an overall accuracy of 76.7% and 84.5% for Zhuhai and Singapore datasets, respectively. The proposed framework contributes to literature in heterogeneous data fusion and is generalizable to other UFZ classification scenarios where human mobility patterns play a role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文幻天发布了新的文献求助10
刚刚
小蘑菇应助酷酷妙梦采纳,获得10
2秒前
指导灰发布了新的文献求助10
2秒前
科目三应助司徒无剑采纳,获得10
2秒前
今后应助开朗以亦采纳,获得10
2秒前
cyyan发布了新的文献求助10
2秒前
a雪橙完成签到 ,获得积分10
2秒前
跳跃尔琴发布了新的文献求助150
2秒前
Janson发布了新的文献求助10
3秒前
科研通AI2S应助四月胧采纳,获得10
3秒前
爱科研的萌新完成签到 ,获得积分10
3秒前
快乐小韩完成签到 ,获得积分10
5秒前
灶灶发布了新的文献求助10
5秒前
6秒前
6秒前
ha完成签到 ,获得积分10
6秒前
6秒前
7秒前
Jiang-Yujia完成签到,获得积分10
8秒前
可爱千兰完成签到,获得积分10
9秒前
bkagyin应助诚心的雅容采纳,获得10
9秒前
kelly发布了新的文献求助20
9秒前
lilac发布了新的文献求助10
9秒前
斯文幻天完成签到,获得积分20
11秒前
脑洞疼应助yaohan1121采纳,获得10
11秒前
YY发布了新的文献求助10
12秒前
默默发布了新的文献求助10
12秒前
12秒前
12秒前
英姑应助英子采纳,获得10
13秒前
layzhj发布了新的文献求助10
13秒前
FashionBoy应助SHENYANG采纳,获得10
13秒前
15秒前
酷酷妙梦发布了新的文献求助10
15秒前
15秒前
peiyy完成签到,获得积分10
16秒前
pp发布了新的文献求助10
16秒前
充电宝应助Janson采纳,获得10
17秒前
17秒前
Orange应助WeiBao采纳,获得30
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825