A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns

地理空间分析 计算机科学 图形 数据挖掘 人工智能 遥感 地理 理论计算机科学
作者
Wang Jifei,Chen‐Chieh Feng,Guan Qun Zhou
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 730-730 被引量:4
标识
DOI:10.3390/rs15030730
摘要

Recent research has shown the advantages of incorporating multisource geospatial data into the classification of urban functional zones (UFZs), particularly remote sensing and social sensing data. However, the effects of combining datasets of varying quality have not been thoroughly analyzed. In addition, human mobility patterns from social sensing data, which capture signals of human activities, are often represented by origin-destination pairs, thus ignoring spatial relationships between UFZs embedded in mobility trajectories. To address the aforementioned issues, this study proposed a graph-based UFZ classification framework that fuses semantic features from high spatial resolution (HSR) remote sensing images, points of interest, and GPS trajectory data. The framework involves three main steps: (1) High-level scene information in HSR remote sensing imageries was extracted through deep neural networks, and multisource semantic embeddings were constructed based on physical features and social sensing features from multiple geospatial data sources; (2) UFZ mobility graph was constructed by spatially joining trajectory information with UFZs to construct topological connections between functional parcel segments; and (3) UFZ segments and multisource semantic features were transformed into nodes and embeddings in the mobility graphs, and subsequently graph-based models were adopted to identify UFZs. The proposed framework was tested on Zhuhai and Singapore datasets. Results indicated that it outperformed traditional classification methods with an overall accuracy of 76.7% and 84.5% for Zhuhai and Singapore datasets, respectively. The proposed framework contributes to literature in heterogeneous data fusion and is generalizable to other UFZ classification scenarios where human mobility patterns play a role.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
qwe发布了新的文献求助10
3秒前
海正发布了新的文献求助10
3秒前
Skye完成签到,获得积分10
5秒前
gao发布了新的文献求助10
6秒前
9秒前
执着访文完成签到,获得积分10
11秒前
科目三应助杭谷波采纳,获得10
11秒前
13秒前
吴宝健发布了新的文献求助10
13秒前
林临林应助SYSUer采纳,获得10
13秒前
炙热的雪糕完成签到,获得积分10
14秒前
17秒前
20秒前
20秒前
21秒前
23秒前
迅速曼冬发布了新的文献求助10
23秒前
笑点低易真完成签到,获得积分10
23秒前
elgar612发布了新的文献求助30
24秒前
26秒前
英俊的铭应助海岢采纳,获得10
27秒前
AGuang应助小手揣兜采纳,获得10
30秒前
香蕉觅云应助Liz采纳,获得10
32秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
songsongsong完成签到,获得积分20
37秒前
科研通AI2S应助siqi采纳,获得30
38秒前
叶y应助卿18900681672采纳,获得10
38秒前
俏皮诺言发布了新的文献求助10
40秒前
852应助杭谷波采纳,获得10
40秒前
小手揣兜完成签到,获得积分10
41秒前
RAmos_1982完成签到,获得积分10
41秒前
cyskdsn完成签到 ,获得积分10
41秒前
tree完成签到,获得积分10
42秒前
hbhbj完成签到,获得积分10
46秒前
46秒前
细腻老五发布了新的文献求助10
47秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959371
求助须知:如何正确求助?哪些是违规求助? 3505602
关于积分的说明 11124845
捐赠科研通 3237384
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844