A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns

地理空间分析 计算机科学 图形 数据挖掘 人工智能 遥感 地理 理论计算机科学
作者
Wang Jifei,Chen‐Chieh Feng,Guan Qun Zhou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 730-730 被引量:4
标识
DOI:10.3390/rs15030730
摘要

Recent research has shown the advantages of incorporating multisource geospatial data into the classification of urban functional zones (UFZs), particularly remote sensing and social sensing data. However, the effects of combining datasets of varying quality have not been thoroughly analyzed. In addition, human mobility patterns from social sensing data, which capture signals of human activities, are often represented by origin-destination pairs, thus ignoring spatial relationships between UFZs embedded in mobility trajectories. To address the aforementioned issues, this study proposed a graph-based UFZ classification framework that fuses semantic features from high spatial resolution (HSR) remote sensing images, points of interest, and GPS trajectory data. The framework involves three main steps: (1) High-level scene information in HSR remote sensing imageries was extracted through deep neural networks, and multisource semantic embeddings were constructed based on physical features and social sensing features from multiple geospatial data sources; (2) UFZ mobility graph was constructed by spatially joining trajectory information with UFZs to construct topological connections between functional parcel segments; and (3) UFZ segments and multisource semantic features were transformed into nodes and embeddings in the mobility graphs, and subsequently graph-based models were adopted to identify UFZs. The proposed framework was tested on Zhuhai and Singapore datasets. Results indicated that it outperformed traditional classification methods with an overall accuracy of 76.7% and 84.5% for Zhuhai and Singapore datasets, respectively. The proposed framework contributes to literature in heterogeneous data fusion and is generalizable to other UFZ classification scenarios where human mobility patterns play a role.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyx完成签到,获得积分10
刚刚
无极微光应助哈哈哈哈采纳,获得20
1秒前
1秒前
1秒前
耶啵耶啵完成签到 ,获得积分10
2秒前
XL发布了新的文献求助10
2秒前
3秒前
小鱼应助等等采纳,获得10
3秒前
Jasper应助等等采纳,获得10
3秒前
3秒前
Hello应助粉色水蒸蛋采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
所所应助小吉麻麻采纳,获得10
5秒前
5秒前
世界小奇发布了新的文献求助10
5秒前
乐乐应助默默的含烟采纳,获得10
6秒前
ss发布了新的文献求助10
6秒前
6秒前
bjyx完成签到,获得积分10
7秒前
善学以致用应助111采纳,获得10
8秒前
loser发布了新的文献求助10
8秒前
8秒前
斯文若之发布了新的文献求助10
8秒前
走四方发布了新的文献求助10
8秒前
Ava应助yxy采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
XQJ发布了新的文献求助10
11秒前
12秒前
CUI完成签到,获得积分10
12秒前
12秒前
12秒前
ikutovaya完成签到,获得积分10
12秒前
畅快安白发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679