KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features

计算机科学 机器学习 人工智能 集成学习 融合 钥匙(锁) 语言学 哲学 计算机安全
作者
Huamei Qi,Xiaomeng Song,Shengzong Liu,Yan Zhang,Kelvin K. L. Wong
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:231: 107378-107378 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107378
摘要

Diabetes is a disease that requires early detection and early treatment, and complications are likely to occur in late stages of the disease, threatening the life of patients. Therefore, in order to diagnose diabetic patients as early as possible, it is necessary to establish a model that can accurately predict diabetes. This paper proposes an ensemble learning framework: KFPredict, which combines multi-input models with key features and machine learning algorithms. We first propose a multi-input neural network model (KF_NN) that fuses key features and uses a decision tree-based selection recursive feature elimination algorithm and correlation coefficient method to screen out the key feature inputs and secondary feature inputs in the model. We then ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classifier for diabetes prediction. Our framework demonstrates good prediction results on the test set with a sensitivity of 0.85, a specificity of 0.98, and an accuracy of 93.5%. Compared with the single prediction method KFPredict, the accuracy is up to 18.18% higher. Concurrently, we also compared KFPredict with the existing prediction methods. It still has good prediction performance, and the accuracy rate is improved by up to 14.93%. This paper constructs a diabetes prediction framework that combines multi-input models with key features and machine learning algorithms. Taking tthe PIMA diabetes dataset as the test data, the experiment shows that the framework presents good prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
派大星和海绵宝宝完成签到,获得积分10
1秒前
壮观百招完成签到 ,获得积分20
2秒前
欢喜发卡完成签到,获得积分10
2秒前
科幻画完成签到,获得积分10
2秒前
Christina发布了新的文献求助10
2秒前
一所悬命完成签到,获得积分10
3秒前
万能图书馆应助ewetylgkhlj采纳,获得10
4秒前
riccixuu完成签到 ,获得积分10
4秒前
orixero应助找寻四氢叶酸采纳,获得10
7秒前
Owen应助凉拌折耳根采纳,获得10
8秒前
刘唐荣发布了新的文献求助10
8秒前
Jasper应助美丽的夜玉采纳,获得30
11秒前
一拳一个小欧阳完成签到 ,获得积分10
12秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
咖啡豆应助科研通管家采纳,获得10
14秒前
咖啡豆应助科研通管家采纳,获得10
14秒前
爆米花应助Persistence采纳,获得10
14秒前
咖啡豆应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
又胖了完成签到,获得积分10
15秒前
脑洞疼应助谦让诗采纳,获得10
16秒前
机灵自中完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
爱听歌的寄云完成签到 ,获得积分10
20秒前
20秒前
Demo发布了新的文献求助10
21秒前
研友_VZG7GZ应助维生素采纳,获得10
22秒前
宋泽艺完成签到 ,获得积分10
22秒前
25秒前
王粒完成签到,获得积分10
31秒前
33秒前
陈宇是傻卵完成签到,获得积分10
33秒前
Demo完成签到,获得积分10
36秒前
打鬼忍者完成签到 ,获得积分10
37秒前
june完成签到,获得积分10
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194