亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features

计算机科学 机器学习 人工智能 集成学习 融合 钥匙(锁) 语言学 哲学 计算机安全
作者
Huamei Qi,Xiaomeng Song,Shengzong Liu,Yan Zhang,Kelvin K. L. Wong
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107378-107378 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107378
摘要

Diabetes is a disease that requires early detection and early treatment, and complications are likely to occur in late stages of the disease, threatening the life of patients. Therefore, in order to diagnose diabetic patients as early as possible, it is necessary to establish a model that can accurately predict diabetes. This paper proposes an ensemble learning framework: KFPredict, which combines multi-input models with key features and machine learning algorithms. We first propose a multi-input neural network model (KF_NN) that fuses key features and uses a decision tree-based selection recursive feature elimination algorithm and correlation coefficient method to screen out the key feature inputs and secondary feature inputs in the model. We then ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classifier for diabetes prediction. Our framework demonstrates good prediction results on the test set with a sensitivity of 0.85, a specificity of 0.98, and an accuracy of 93.5%. Compared with the single prediction method KFPredict, the accuracy is up to 18.18% higher. Concurrently, we also compared KFPredict with the existing prediction methods. It still has good prediction performance, and the accuracy rate is improved by up to 14.93%. This paper constructs a diabetes prediction framework that combines multi-input models with key features and machine learning algorithms. Taking tthe PIMA diabetes dataset as the test data, the experiment shows that the framework presents good prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
量子星尘发布了新的文献求助10
21秒前
zzzllove完成签到 ,获得积分10
1分钟前
1分钟前
英勇小伙完成签到,获得积分10
1分钟前
1分钟前
喊我彩彩发布了新的文献求助10
1分钟前
1分钟前
小玉米完成签到 ,获得积分10
1分钟前
喊我彩彩完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CING发布了新的文献求助10
1分钟前
1分钟前
尊敬的丹烟完成签到 ,获得积分10
2分钟前
wwww完成签到 ,获得积分10
2分钟前
2分钟前
CING完成签到,获得积分10
2分钟前
clp完成签到,获得积分10
2分钟前
3分钟前
shirley要奋斗完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
jeronimo完成签到,获得积分10
3分钟前
yhgz完成签到,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
葉鳳怡完成签到 ,获得积分10
4分钟前
4分钟前
飘逸晓凡完成签到,获得积分20
4分钟前
玄音完成签到,获得积分10
4分钟前
check003完成签到,获得积分10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
曾经不言完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
爱笑的醉卉完成签到,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128617
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069