计算机科学                        
                
                                
                        
                            机器学习                        
                
                                
                        
                            人工智能                        
                
                                
                        
                            集成学习                        
                
                                
                        
                            融合                        
                
                                
                        
                            钥匙(锁)                        
                
                                
                        
                            计算机安全                        
                
                                
                        
                            语言学                        
                
                                
                        
                            哲学                        
                
                        
                    
            作者
            
                Huamei Qi,Xiaomeng Song,Shengzong Liu,Yan Zhang,Kelvin K. L. Wong            
         
                    
        
    
            
            标识
            
                                    DOI:10.1016/j.cmpb.2023.107378
                                    
                                
                                 
         
        
                
            摘要
            
            Diabetes is a disease that requires early detection and early treatment, and complications are likely to occur in late stages of the disease, threatening the life of patients. Therefore, in order to diagnose diabetic patients as early as possible, it is necessary to establish a model that can accurately predict diabetes. This paper proposes an ensemble learning framework: KFPredict, which combines multi-input models with key features and machine learning algorithms. We first propose a multi-input neural network model (KF_NN) that fuses key features and uses a decision tree-based selection recursive feature elimination algorithm and correlation coefficient method to screen out the key feature inputs and secondary feature inputs in the model. We then ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classifier for diabetes prediction. Our framework demonstrates good prediction results on the test set with a sensitivity of 0.85, a specificity of 0.98, and an accuracy of 93.5%. Compared with the single prediction method KFPredict, the accuracy is up to 18.18% higher. Concurrently, we also compared KFPredict with the existing prediction methods. It still has good prediction performance, and the accuracy rate is improved by up to 14.93%. This paper constructs a diabetes prediction framework that combines multi-input models with key features and machine learning algorithms. Taking tthe PIMA diabetes dataset as the test data, the experiment shows that the framework presents good prediction results.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI