Non-contact surface roughness evaluation of milling surface using CNN-deep learning models

表面粗糙度 机械加工 田口方法 瓶颈 表面光洁度 机械工程 正交数组 工程制图 曲面(拓扑) 计算机科学 人工智能 工程类 材料科学 机器学习 数学 复合材料 几何学 嵌入式系统
作者
Binayak Bhandari,Gijun Park
出处
期刊:International Journal of Computer Integrated Manufacturing [Taylor & Francis]
卷期号:37 (4): 423-437 被引量:27
标识
DOI:10.1080/0951192x.2022.2126012
摘要

Machining quality control is a bottleneck operation as human inspectors and expensive equipment is needed in most operations. Automated quality assurance in the manufacturing industry has the potential to replace humans and lower the cost of the machined product. This paper presents the analysis of end-milled machined surfaces backed with experimental and deep learning model investigations. The effects of machining parameters like spindle speed, feed rate (table feed), depth of cut, cutting speed, and machining duration were investigated to find machined surface roughness using Taguchi orthogonal array. Following standard DOE, surface roughness and machined surface image were recorded for each machining experiment and categorized into four classes, viz. fine, smooth, rough, and coarse, based on the roughness value (Ra). The machined surface images were used to develop CNN models for surface roughness class prediction. Further, comparative studies among the five popular optimizers were performed. The results showed that the CNN model with the 'Rectified Adam' optimizer performed better amongst the optimizer pool, with the training and test accuracy of 96.30% and 92.91%, respectively. The proposed CNN model features a highly accurate and slim structure, potentially substituting human quality control procedures that employ expensive surface roughness measuring devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小凉完成签到,获得积分10
1秒前
djiwisksk66应助shinn采纳,获得10
3秒前
4秒前
幽默的小之完成签到,获得积分10
4秒前
烟花应助易烊干洗采纳,获得10
4秒前
4秒前
5165asd完成签到,获得积分10
5秒前
5秒前
6秒前
Crazy完成签到 ,获得积分10
7秒前
wwwwwwjh完成签到,获得积分10
8秒前
银杏叶发布了新的文献求助10
8秒前
8秒前
HOXXXiii发布了新的文献求助10
9秒前
xuanyu发布了新的文献求助100
10秒前
Haonan完成签到,获得积分10
11秒前
小乐完成签到 ,获得积分10
11秒前
耍酷的冷雪完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
小阳完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
木头人应助Billy采纳,获得10
16秒前
易烊干洗发布了新的文献求助10
18秒前
热心市民小红花应助wendy采纳,获得10
18秒前
传奇3应助shinn采纳,获得10
19秒前
20秒前
一颗有理想的蛋完成签到 ,获得积分10
21秒前
Owen应助笑点低的丹烟采纳,获得10
22秒前
852应助笑点低的丹烟采纳,获得10
22秒前
22秒前
22秒前
SciGPT应助Mely0203采纳,获得10
23秒前
田様应助小阳采纳,获得10
25秒前
RATHER发布了新的文献求助10
26秒前
26秒前
凌风发布了新的文献求助10
26秒前
迷路的祥发布了新的文献求助10
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309