Non-contact surface roughness evaluation of milling surface using CNN-deep learning models

表面粗糙度 机械加工 田口方法 瓶颈 表面光洁度 机械工程 正交数组 工程制图 曲面(拓扑) 计算机科学 人工智能 工程类 材料科学 机器学习 数学 复合材料 几何学 嵌入式系统
作者
Binayak Bhandari,Gijun Park
出处
期刊:International Journal of Computer Integrated Manufacturing [Informa]
卷期号:37 (4): 423-437 被引量:20
标识
DOI:10.1080/0951192x.2022.2126012
摘要

Machining quality control is a bottleneck operation as human inspectors and expensive equipment is needed in most operations. Automated quality assurance in the manufacturing industry has the potential to replace humans and lower the cost of the machined product. This paper presents the analysis of end-milled machined surfaces backed with experimental and deep learning model investigations. The effects of machining parameters like spindle speed, feed rate (table feed), depth of cut, cutting speed, and machining duration were investigated to find machined surface roughness using Taguchi orthogonal array. Following standard DOE, surface roughness and machined surface image were recorded for each machining experiment and categorized into four classes, viz. fine, smooth, rough, and coarse, based on the roughness value (Ra). The machined surface images were used to develop CNN models for surface roughness class prediction. Further, comparative studies among the five popular optimizers were performed. The results showed that the CNN model with the 'Rectified Adam' optimizer performed better amongst the optimizer pool, with the training and test accuracy of 96.30% and 92.91%, respectively. The proposed CNN model features a highly accurate and slim structure, potentially substituting human quality control procedures that employ expensive surface roughness measuring devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡采白发布了新的文献求助10
1秒前
1秒前
2秒前
Akim应助dingdong采纳,获得10
2秒前
2秒前
2秒前
satchzhao发布了新的文献求助10
2秒前
可爱的函函应助尺素寸心采纳,获得10
2秒前
66发布了新的文献求助10
3秒前
一鸣完成签到,获得积分10
3秒前
3秒前
ding应助呵呵呵呵采纳,获得10
3秒前
3秒前
汉堡包应助hkxfg采纳,获得10
5秒前
6秒前
sw完成签到,获得积分10
6秒前
没有神的过往完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
芋圆不圆完成签到,获得积分10
10秒前
招财不肥发布了新的文献求助10
11秒前
zxc111发布了新的文献求助10
11秒前
魔幻的从梦完成签到,获得积分10
11秒前
12秒前
Xiaoxiao应助sunyexuan采纳,获得10
13秒前
14秒前
15秒前
淼淼之锋完成签到 ,获得积分10
15秒前
赢赢完成签到 ,获得积分10
15秒前
16秒前
17秒前
科目三应助落落采纳,获得10
19秒前
67发布了新的文献求助10
19秒前
19秒前
溜溜完成签到,获得积分10
19秒前
xixi完成签到 ,获得积分10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
撒上咖啡应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808