Probabilistic Prediction of Collisions between Cyclists and Vehicles Based on Uncertainty of Cyclists’ Movements

碰撞 撞车 概率逻辑 毒物控制 避碰 蒙特卡罗方法 计算机科学 模拟 工程类 统计 数学 人工智能 计算机安全 医学 环境卫生 程序设计语言
作者
Di Pan,Yong Han,Q.Q. Jin,Jin Kan,Hongwu Huang,Koji Mizuno,Robert R. Thomson
出处
期刊:Transportation Research Record [SAGE]
卷期号:: 036119812211212-036119812211212
标识
DOI:10.1177/03611981221121270
摘要

The uncertainty of cyclists’ movements has a significant impact on predicting the risk of collisions between cyclists and vehicles. The purpose of this study was to provide a method for assessing collision risk using probability, taking into account the uncertainty of cyclists’ movements. A cyclist model was first developed using a first-order Markov model. Then, based on Monte Carlo sampling, the distribution characteristics of the minimum distance and the time-to-collision (TTC) between the vehicle and the cyclist were extracted. By fitting these features, the probability density functions of the collision distance and TTC were estimated to derive the collision probabilities. The effectiveness of the collision probability prediction model was benchmarked against a deterministic crash risk prediction model (autonomous emergency braking [AEB] system) applied to three real-world cases previously reconstructed in an in-depth crash database. The results show that the collision probability prediction model can effectively predict the risk of collisions between cyclists and vehicles with better accuracy than AEB systems using a fixed trigger threshold. This study is a valuable reference for the development of advanced vehicle collision avoidance systems to protect cyclists and other vulnerable road users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听见完成签到,获得积分10
刚刚
KingLancet完成签到,获得积分10
1秒前
害羞便当完成签到 ,获得积分10
1秒前
ylc发布了新的文献求助10
3秒前
4秒前
Salamenda发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
7秒前
sunshine完成签到,获得积分10
8秒前
lf完成签到,获得积分10
8秒前
dzbb应助鲜艳的亦玉采纳,获得10
8秒前
YangD_H完成签到,获得积分10
9秒前
林兰特完成签到,获得积分10
9秒前
9秒前
mo完成签到,获得积分10
10秒前
10秒前
勤劳思真应助上b班采纳,获得10
10秒前
11秒前
12秒前
12秒前
窦羊青完成签到,获得积分10
13秒前
14秒前
定烜完成签到,获得积分10
14秒前
碳酸芙兰发布了新的文献求助10
15秒前
星辰大海应助成就的山水采纳,获得20
16秒前
wjw发布了新的文献求助10
16秒前
17秒前
17秒前
刘欢发布了新的文献求助10
18秒前
小蘑菇应助三个土拔鼠采纳,获得10
19秒前
longchb完成签到,获得积分10
21秒前
碳酸芙兰发布了新的文献求助10
22秒前
小酒窝发布了新的文献求助10
22秒前
23秒前
英俊的铭应助机智的乌采纳,获得10
24秒前
赵李奕安发布了新的文献求助10
25秒前
27秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905