Probabilistic Prediction of Collisions between Cyclists and Vehicles Based on Uncertainty of Cyclists’ Movements

碰撞 撞车 概率逻辑 毒物控制 避碰 蒙特卡罗方法 计算机科学 模拟 工程类 统计 数学 人工智能 计算机安全 医学 环境卫生 程序设计语言
作者
Di Pan,Yong Han,Q.Q. Jin,Jin Kan,Hongwu Huang,Koji Mizuno,Robert R. Thomson
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:: 036119812211212-036119812211212
标识
DOI:10.1177/03611981221121270
摘要

The uncertainty of cyclists’ movements has a significant impact on predicting the risk of collisions between cyclists and vehicles. The purpose of this study was to provide a method for assessing collision risk using probability, taking into account the uncertainty of cyclists’ movements. A cyclist model was first developed using a first-order Markov model. Then, based on Monte Carlo sampling, the distribution characteristics of the minimum distance and the time-to-collision (TTC) between the vehicle and the cyclist were extracted. By fitting these features, the probability density functions of the collision distance and TTC were estimated to derive the collision probabilities. The effectiveness of the collision probability prediction model was benchmarked against a deterministic crash risk prediction model (autonomous emergency braking [AEB] system) applied to three real-world cases previously reconstructed in an in-depth crash database. The results show that the collision probability prediction model can effectively predict the risk of collisions between cyclists and vehicles with better accuracy than AEB systems using a fixed trigger threshold. This study is a valuable reference for the development of advanced vehicle collision avoidance systems to protect cyclists and other vulnerable road users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情芷雪关注了科研通微信公众号
刚刚
刚刚
豆芽发布了新的文献求助10
1秒前
1秒前
JAYZHANG完成签到,获得积分10
1秒前
秋颦发布了新的文献求助10
1秒前
zxy14关注了科研通微信公众号
1秒前
英俊的铭应助单纯的酸奶采纳,获得10
2秒前
3秒前
3秒前
3秒前
LiDaYang发布了新的文献求助10
3秒前
田様应助樱桃下的小丸子采纳,获得10
4秒前
4秒前
4秒前
5秒前
无花果应助小蛮同学采纳,获得10
5秒前
热情依白完成签到 ,获得积分10
6秒前
dfghjkl完成签到,获得积分10
6秒前
6秒前
lingling发布了新的文献求助10
7秒前
豆芽完成签到,获得积分10
7秒前
DoIt完成签到,获得积分10
7秒前
Mathea应助ttyj采纳,获得10
8秒前
diadia完成签到,获得积分10
8秒前
cheeries发布了新的文献求助10
8秒前
9秒前
浮游应助lyy采纳,获得10
9秒前
舒适橘子关注了科研通微信公众号
9秒前
dfghjkl发布了新的文献求助10
9秒前
wickedzz完成签到,获得积分0
9秒前
LiDaYang完成签到,获得积分10
10秒前
10秒前
猪猪hero发布了新的文献求助30
11秒前
11秒前
11秒前
11秒前
852应助清脆泥猴桃采纳,获得10
11秒前
hjw发布了新的文献求助10
11秒前
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203058
求助须知:如何正确求助?哪些是违规求助? 4382742
关于积分的说明 13646505
捐赠科研通 4240027
什么是DOI,文献DOI怎么找? 2326295
邀请新用户注册赠送积分活动 1323935
关于科研通互助平台的介绍 1275919