局部场电位
神经科学
计算机科学
脑-机接口
任务(项目管理)
心理学
脑电图
经济
管理
作者
Taruna Yadav,Oman Magana Tellez,Joseph T. Francis
标识
DOI:10.1109/embc48229.2022.9871212
摘要
A better understanding of reward signaling in the sensorimotor cortices can aid in developing Reinforcement Learning-based Brain-Computer Interfaces (RLBCI) for restoration of movement functions with fewer implants. Brain-computer interfaces (BCIs) using local field potentials (LFPs) have recently achieved performance comparable to spike-BCIs [1]. With superior stability over time, LFPs may be the preferred signal for BCIs. We show that sensorimotor LFPs can provide reward level information (R1 - R3) like spikes[2]. We used a cued reward-level reaching task in which reward information was temporally dissociated from movement information. This allowed the study of reward- and movement-related modulations in LFPs. We recorded simultaneously from contralateral primary -somatosensory (S1), -motor (M1), and the dorsal premotor (PMd) cortices in a female Macaca Mulatta. We found that all three cortices' average beta band (14-30 Hz) amplitude showed robust modulation with reward levels during the cue presentation period. Such modulation was consistently observed after controlling for cue color, differences in behavioral variables, and electromyogram (EMG) activity. Statistical amplitude analysis showed that reward level could be extracted from the simple LFP feature of beta band amplitude, even before a reaching target appeared, and no specific reach plan could be developed. Clinical Relevance - The availability of reward-related signals in the sensorimotor cortical (S1, M1,and PMd) LFPs' prior to movement planning opens new avenues to build RLBCIs with fewer implants recording fewer sites among different cortices Reward and motivational representations derived from LFPs compared to spikes allow the development of long-term clinical applications given LFP's stability and ease of recording over long periods.
科研通智能强力驱动
Strongly Powered by AbleSci AI