IoT botnet detection with feature reconstruction and interval optimization

计算机科学 特征选择 特征(语言学) 僵尸网络 重采样 数据挖掘 样品(材料) 人工智能 模式识别(心理学) 集合(抽象数据类型) 互联网 语言学 色谱法 万维网 哲学 化学 程序设计语言
作者
Hongyu Yang,Zelin Wang,Liang Zhang,Xiang Cheng
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 12009-12034 被引量:4
标识
DOI:10.1002/int.23074
摘要

The existing botnet detection methods have the problems of uneven sampling, poor feature selection, and weak generalization ability, resulting in low detection and classification results and poor adaptability to the internet of things (IoT) environment with limited computing and storage resources. This paper proposes an IoT botnet detection method using feature reconstruction and interval optimization to solve the above problems. Through the designed address triple and time window-based IP aggregation and feature reconstruction method (ATTW-IP-FR), the network traffic samples obtained from the IoT gateway are integrated, and the flow features are reconstructed to attain the reconstructed sample set. The proposed self-corrected hybrid weighted sampling algorithm balances the normal and botnet flow samples in the reconstructed sample set to get the resampling sample set. The introduced multiattribute decision-making and adjacency relation chain-based sequential forward selection algorithm is applied to eliminate the redundant features in the resampling sample set, and the optimal feature subset is obtained. The resampling sample set filtered by the optimal feature subset is detected and classified through the designed two-stage hybrid heterogeneous model optimized by the intermittent chaos and bald eagle search algorithm-based interval optimization algorithm. The experimental results show that the proposed method effectively detects the botnet in two real IoT scenarios. The detection accuracy is 99.17 % $ \% $ , the Matthews correlation coefficient is 98.35 % $ \% $ , the false positive rate is 0.25 % $ \% $ , and the false negative rate is 1.27 % $ \% $ , which are better than the existing methods. This method can effectively reduce sampling and feature selection time and space overhead and better adapt to the resource-constrained IoT environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢喜的毛豆完成签到,获得积分10
刚刚
xxxx_w完成签到,获得积分10
1秒前
baihe完成签到,获得积分10
1秒前
1秒前
炙热的雨双完成签到,获得积分10
2秒前
wanci应助李三今采纳,获得10
2秒前
檀木居然完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助王弈轩采纳,获得10
3秒前
3秒前
wang树发布了新的文献求助10
3秒前
李健应助ly采纳,获得10
4秒前
啾比文发布了新的文献求助10
4秒前
苗苗完成签到,获得积分10
4秒前
李晶晶发布了新的文献求助10
4秒前
化合物来发布了新的文献求助10
5秒前
浮游应助顾建瑜采纳,获得10
5秒前
科研通AI2S应助顾建瑜采纳,获得10
5秒前
5秒前
陈晗予完成签到,获得积分10
5秒前
钟兆宁完成签到,获得积分10
5秒前
haojinxiu发布了新的文献求助10
6秒前
ao20000106应助小瑞采纳,获得10
6秒前
徐昊雯发布了新的文献求助10
6秒前
7秒前
7秒前
white发布了新的文献求助10
7秒前
柳得楷完成签到,获得积分10
8秒前
NicotineZen完成签到,获得积分10
8秒前
9秒前
10秒前
shea应助饱满的小霜采纳,获得10
10秒前
10秒前
勋的猫完成签到,获得积分10
10秒前
10秒前
传奇3应助神猪采纳,获得10
10秒前
风趣幻枫完成签到,获得积分10
10秒前
mihhhhh完成签到,获得积分10
10秒前
咚咚咚完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437