亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IoT botnet detection with feature reconstruction and interval optimization

计算机科学 特征选择 特征(语言学) 僵尸网络 重采样 数据挖掘 样品(材料) 人工智能 模式识别(心理学) 集合(抽象数据类型) 互联网 语言学 色谱法 万维网 哲学 化学 程序设计语言
作者
Hongyu Yang,Zelin Wang,Liang Zhang,Xiang Cheng
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 12009-12034 被引量:4
标识
DOI:10.1002/int.23074
摘要

The existing botnet detection methods have the problems of uneven sampling, poor feature selection, and weak generalization ability, resulting in low detection and classification results and poor adaptability to the internet of things (IoT) environment with limited computing and storage resources. This paper proposes an IoT botnet detection method using feature reconstruction and interval optimization to solve the above problems. Through the designed address triple and time window-based IP aggregation and feature reconstruction method (ATTW-IP-FR), the network traffic samples obtained from the IoT gateway are integrated, and the flow features are reconstructed to attain the reconstructed sample set. The proposed self-corrected hybrid weighted sampling algorithm balances the normal and botnet flow samples in the reconstructed sample set to get the resampling sample set. The introduced multiattribute decision-making and adjacency relation chain-based sequential forward selection algorithm is applied to eliminate the redundant features in the resampling sample set, and the optimal feature subset is obtained. The resampling sample set filtered by the optimal feature subset is detected and classified through the designed two-stage hybrid heterogeneous model optimized by the intermittent chaos and bald eagle search algorithm-based interval optimization algorithm. The experimental results show that the proposed method effectively detects the botnet in two real IoT scenarios. The detection accuracy is 99.17 % $ \% $ , the Matthews correlation coefficient is 98.35 % $ \% $ , the false positive rate is 0.25 % $ \% $ , and the false negative rate is 1.27 % $ \% $ , which are better than the existing methods. This method can effectively reduce sampling and feature selection time and space overhead and better adapt to the resource-constrained IoT environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妩媚的发夹完成签到,获得积分20
3秒前
4秒前
cmc发布了新的文献求助10
8秒前
科研通AI2S应助cmc采纳,获得10
15秒前
搜集达人应助西米采纳,获得10
16秒前
21秒前
22秒前
37秒前
西米发布了新的文献求助10
42秒前
NexusExplorer应助科研通管家采纳,获得20
43秒前
43秒前
43秒前
熬夜熊猫完成签到 ,获得积分10
1分钟前
1分钟前
yzzzz发布了新的文献求助10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
tracyinchina完成签到,获得积分10
2分钟前
2分钟前
在水一方应助友好的巧凡采纳,获得10
2分钟前
2分钟前
CCrain完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
伶俐的从菡完成签到,获得积分10
2分钟前
2分钟前
tracyinchina发布了新的文献求助30
2分钟前
axi完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ddddddd完成签到 ,获得积分10
2分钟前
鲁丁丁发布了新的文献求助10
2分钟前
鲁丁丁完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418313
求助须知:如何正确求助?哪些是违规求助? 4534003
关于积分的说明 14142967
捐赠科研通 4450296
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432891
关于科研通互助平台的介绍 1410244