IoT botnet detection with feature reconstruction and interval optimization

计算机科学 特征选择 特征(语言学) 僵尸网络 重采样 数据挖掘 样品(材料) 人工智能 模式识别(心理学) 集合(抽象数据类型) 互联网 语言学 色谱法 万维网 哲学 化学 程序设计语言
作者
Hongyu Yang,Zelin Wang,Liang Zhang,Xiang Cheng
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 12009-12034 被引量:4
标识
DOI:10.1002/int.23074
摘要

The existing botnet detection methods have the problems of uneven sampling, poor feature selection, and weak generalization ability, resulting in low detection and classification results and poor adaptability to the internet of things (IoT) environment with limited computing and storage resources. This paper proposes an IoT botnet detection method using feature reconstruction and interval optimization to solve the above problems. Through the designed address triple and time window-based IP aggregation and feature reconstruction method (ATTW-IP-FR), the network traffic samples obtained from the IoT gateway are integrated, and the flow features are reconstructed to attain the reconstructed sample set. The proposed self-corrected hybrid weighted sampling algorithm balances the normal and botnet flow samples in the reconstructed sample set to get the resampling sample set. The introduced multiattribute decision-making and adjacency relation chain-based sequential forward selection algorithm is applied to eliminate the redundant features in the resampling sample set, and the optimal feature subset is obtained. The resampling sample set filtered by the optimal feature subset is detected and classified through the designed two-stage hybrid heterogeneous model optimized by the intermittent chaos and bald eagle search algorithm-based interval optimization algorithm. The experimental results show that the proposed method effectively detects the botnet in two real IoT scenarios. The detection accuracy is 99.17 % $ \% $ , the Matthews correlation coefficient is 98.35 % $ \% $ , the false positive rate is 0.25 % $ \% $ , and the false negative rate is 1.27 % $ \% $ , which are better than the existing methods. This method can effectively reduce sampling and feature selection time and space overhead and better adapt to the resource-constrained IoT environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
调皮小蘑菇完成签到,获得积分20
2秒前
3秒前
Mhj13810发布了新的文献求助10
3秒前
4秒前
充电宝应助一路繁花采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
5秒前
5秒前
搜集达人应助tkxfy采纳,获得10
5秒前
6秒前
Messi发布了新的文献求助10
6秒前
朱朱叹气发布了新的文献求助10
6秒前
王晨旭完成签到,获得积分10
6秒前
7秒前
7秒前
Dr.向发布了新的文献求助10
7秒前
月明发布了新的文献求助10
7秒前
浩二发布了新的文献求助10
8秒前
SciGPT应助79采纳,获得10
8秒前
今后应助小狒狒采纳,获得10
9秒前
潘刚完成签到,获得积分20
9秒前
CodeCraft应助chenghuan采纳,获得10
10秒前
明年今日完成签到,获得积分10
10秒前
怡然的皮皮虾完成签到,获得积分10
10秒前
乐观鸣凤完成签到,获得积分10
10秒前
orixero应助TrDoubleE采纳,获得10
10秒前
11秒前
11秒前
芥子发布了新的文献求助150
11秒前
xia发布了新的文献求助10
11秒前
英俊的铭应助吴林采纳,获得10
12秒前
12秒前
lwg完成签到,获得积分10
13秒前
刀疤尤金完成签到,获得积分20
13秒前
tang完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
天马发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5157717
求助须知:如何正确求助?哪些是违规求助? 4352814
关于积分的说明 13552905
捐赠科研通 4196185
什么是DOI,文献DOI怎么找? 2301527
邀请新用户注册赠送积分活动 1301277
关于科研通互助平台的介绍 1246423