IoT botnet detection with feature reconstruction and interval optimization

计算机科学 特征选择 特征(语言学) 僵尸网络 重采样 数据挖掘 样品(材料) 人工智能 模式识别(心理学) 集合(抽象数据类型) 互联网 哲学 语言学 万维网 化学 色谱法 程序设计语言
作者
Hongyu Yang,Zelin Wang,Liang Zhang,Xiang Cheng
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 12009-12034 被引量:4
标识
DOI:10.1002/int.23074
摘要

The existing botnet detection methods have the problems of uneven sampling, poor feature selection, and weak generalization ability, resulting in low detection and classification results and poor adaptability to the internet of things (IoT) environment with limited computing and storage resources. This paper proposes an IoT botnet detection method using feature reconstruction and interval optimization to solve the above problems. Through the designed address triple and time window-based IP aggregation and feature reconstruction method (ATTW-IP-FR), the network traffic samples obtained from the IoT gateway are integrated, and the flow features are reconstructed to attain the reconstructed sample set. The proposed self-corrected hybrid weighted sampling algorithm balances the normal and botnet flow samples in the reconstructed sample set to get the resampling sample set. The introduced multiattribute decision-making and adjacency relation chain-based sequential forward selection algorithm is applied to eliminate the redundant features in the resampling sample set, and the optimal feature subset is obtained. The resampling sample set filtered by the optimal feature subset is detected and classified through the designed two-stage hybrid heterogeneous model optimized by the intermittent chaos and bald eagle search algorithm-based interval optimization algorithm. The experimental results show that the proposed method effectively detects the botnet in two real IoT scenarios. The detection accuracy is 99.17 % $ \% $ , the Matthews correlation coefficient is 98.35 % $ \% $ , the false positive rate is 0.25 % $ \% $ , and the false negative rate is 1.27 % $ \% $ , which are better than the existing methods. This method can effectively reduce sampling and feature selection time and space overhead and better adapt to the resource-constrained IoT environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李莫凡关注了科研通微信公众号
2秒前
Rondab应助EASA采纳,获得10
4秒前
淡水痕完成签到,获得积分10
5秒前
Hello应助ay采纳,获得20
5秒前
隐形惜筠发布了新的文献求助10
6秒前
科研通AI5应助一天吃瓜25h采纳,获得10
8秒前
共享精神应助xxz采纳,获得10
8秒前
Oceanstal完成签到,获得积分10
9秒前
ay完成签到,获得积分10
12秒前
李健的小迷弟应助江江采纳,获得10
12秒前
陈红安完成签到,获得积分10
16秒前
谨慎妙菡完成签到,获得积分10
17秒前
孤独的哈密瓜数据线完成签到 ,获得积分10
18秒前
19秒前
欢呼的未来完成签到,获得积分20
20秒前
鸣笛应助人走茶凉采纳,获得10
22秒前
24秒前
sssss发布了新的文献求助10
24秒前
舒心衣发布了新的文献求助10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得20
27秒前
27秒前
wanci应助科研通管家采纳,获得10
28秒前
桐桐应助小后院采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得20
28秒前
28秒前
28秒前
28秒前
SYLH应助科研通管家采纳,获得20
28秒前
pluto应助灰底爆米花采纳,获得10
28秒前
AJ完成签到,获得积分10
30秒前
31秒前
Capacition6完成签到,获得积分10
32秒前
微笑的井完成签到 ,获得积分10
33秒前
34秒前
34秒前
35秒前
35秒前
35秒前
爱吃饼干的土拨鼠完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644