IoT botnet detection with feature reconstruction and interval optimization

计算机科学 特征选择 特征(语言学) 僵尸网络 重采样 数据挖掘 样品(材料) 人工智能 模式识别(心理学) 集合(抽象数据类型) 互联网 哲学 语言学 万维网 化学 色谱法 程序设计语言
作者
Hongyu Yang,Zelin Wang,Liang Zhang,Xiang Cheng
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 12009-12034 被引量:3
标识
DOI:10.1002/int.23074
摘要

The existing botnet detection methods have the problems of uneven sampling, poor feature selection, and weak generalization ability, resulting in low detection and classification results and poor adaptability to the internet of things (IoT) environment with limited computing and storage resources. This paper proposes an IoT botnet detection method using feature reconstruction and interval optimization to solve the above problems. Through the designed address triple and time window-based IP aggregation and feature reconstruction method (ATTW-IP-FR), the network traffic samples obtained from the IoT gateway are integrated, and the flow features are reconstructed to attain the reconstructed sample set. The proposed self-corrected hybrid weighted sampling algorithm balances the normal and botnet flow samples in the reconstructed sample set to get the resampling sample set. The introduced multiattribute decision-making and adjacency relation chain-based sequential forward selection algorithm is applied to eliminate the redundant features in the resampling sample set, and the optimal feature subset is obtained. The resampling sample set filtered by the optimal feature subset is detected and classified through the designed two-stage hybrid heterogeneous model optimized by the intermittent chaos and bald eagle search algorithm-based interval optimization algorithm. The experimental results show that the proposed method effectively detects the botnet in two real IoT scenarios. The detection accuracy is 99.17 % $ \% $ , the Matthews correlation coefficient is 98.35 % $ \% $ , the false positive rate is 0.25 % $ \% $ , and the false negative rate is 1.27 % $ \% $ , which are better than the existing methods. This method can effectively reduce sampling and feature selection time and space overhead and better adapt to the resource-constrained IoT environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lizhi发布了新的文献求助10
刚刚
annie完成签到,获得积分10
1秒前
无花果应助奋斗的珍采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Carhao应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
mslg33完成签到,获得积分10
2秒前
2秒前
2秒前
白熊发布了新的文献求助10
2秒前
miamia77应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
墨染八云完成签到,获得积分20
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Carhao应助科研通管家采纳,获得30
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
杨金城发布了新的文献求助10
4秒前
5秒前
宋1234完成签到,获得积分20
5秒前
6秒前
栗檬虾完成签到 ,获得积分10
6秒前
Ceres发布了新的文献求助10
7秒前
jessica完成签到,获得积分10
7秒前
7秒前
GXJ发布了新的文献求助10
9秒前
Ni发布了新的文献求助10
9秒前
醉熏的井发布了新的文献求助10
11秒前
小羊发布了新的文献求助10
12秒前
jevon应助yehata采纳,获得10
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233633
求助须知:如何正确求助?哪些是违规求助? 2880198
关于积分的说明 8214308
捐赠科研通 2547604
什么是DOI,文献DOI怎么找? 1377100
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623173