嗜酸性粒细胞增多症
嗜酸性粒细胞
医学
嗜酸性
慢性鼻-鼻窦炎
鼻息肉
嗜酸性粒细胞过氧化物酶
病理
生物标志物
免疫学
生物
哮喘
生物化学
作者
Kristine A. Smith,Amarbir S. Gill,Chelsea E. Pollard,Jorgen S. Sumsion,Hedieh Saffari,Shaelene Ashby,Benjamin L. Witt,Paige A. Shipman,David A. Gabrielsen,Michael Yim,Joshua M. Levy,Gretchen M. Oakley,Richard R. Orlandi,Gerald J. Gleich,Jeremiah A. Alt,Abigail Pulsipher
标识
DOI:10.1016/j.jaci.2023.04.012
摘要
Background A definitive diagnosis of eosinophilic chronic rhinosinusitis (eCRS) requires invasive surgical tissue sampling and histologic enumeration of intact eosinophils. Eosinophil peroxidase (EPX) is an accurate biomarker of sinonasal tissue eosinophilia in CRS regardless of polyp status. A less invasive and rapid method that accurately identifies tissue eosinophilia would be of great benefit to patients. Objective We sought to evaluate a new clinical tool that uses a nasal swab and colorimetric EPX activity assay to predict a diagnosis of eCRS. Methods A prospective, observational cohort study was conducted using nasal swabs and sinonasal tissue biopsies obtained from patients with CRS electing endoscopic sinus surgery. Patients were classified as non-eCRS (n = 19) and eCRS (n = 35) on the basis of pathologically determined eosinophil counts of less than 10 or greater than or equal to 10 eosinophils/HPF, respectively. Swab-deposited EPX activity was measured and compared with tissue eosinophil counts, EPX levels, and CRS-specific disease metrics. Results EPX activity was significantly increased in patients with eCRS than in patients without eCRS (P < .0001). With a relative absorbance unit cutoff value of greater than or equal to 0.80, the assay demonstrated high sensitivity (85.7%) and moderate specificity (79.0%) for confirming eCRS. Spearman correlations between EPX activity and tissue eosinophil counts (rs = 0.424), EPX levels (rs = 0.503), and Lund-Kennedy endoscopy scores (rs = 0.440) in eCRS were significant (P < .05). Conclusions This investigation evaluates a nasal swab sampling method and EPX activity assay that accurately confirms eCRS. This method could potentially address the unmet need to identify sinonasal tissue eosinophilia at the point-of-care, as well as to longitudinally monitor eosinophil activity and treatment response. A definitive diagnosis of eosinophilic chronic rhinosinusitis (eCRS) requires invasive surgical tissue sampling and histologic enumeration of intact eosinophils. Eosinophil peroxidase (EPX) is an accurate biomarker of sinonasal tissue eosinophilia in CRS regardless of polyp status. A less invasive and rapid method that accurately identifies tissue eosinophilia would be of great benefit to patients. We sought to evaluate a new clinical tool that uses a nasal swab and colorimetric EPX activity assay to predict a diagnosis of eCRS. A prospective, observational cohort study was conducted using nasal swabs and sinonasal tissue biopsies obtained from patients with CRS electing endoscopic sinus surgery. Patients were classified as non-eCRS (n = 19) and eCRS (n = 35) on the basis of pathologically determined eosinophil counts of less than 10 or greater than or equal to 10 eosinophils/HPF, respectively. Swab-deposited EPX activity was measured and compared with tissue eosinophil counts, EPX levels, and CRS-specific disease metrics. EPX activity was significantly increased in patients with eCRS than in patients without eCRS (P < .0001). With a relative absorbance unit cutoff value of greater than or equal to 0.80, the assay demonstrated high sensitivity (85.7%) and moderate specificity (79.0%) for confirming eCRS. Spearman correlations between EPX activity and tissue eosinophil counts (rs = 0.424), EPX levels (rs = 0.503), and Lund-Kennedy endoscopy scores (rs = 0.440) in eCRS were significant (P < .05). This investigation evaluates a nasal swab sampling method and EPX activity assay that accurately confirms eCRS. This method could potentially address the unmet need to identify sinonasal tissue eosinophilia at the point-of-care, as well as to longitudinally monitor eosinophil activity and treatment response.
科研通智能强力驱动
Strongly Powered by AbleSci AI