Predictive modeling for the boiling heat transfer coefficient of R1234yf inside a multiport minichannel tube

传热系数 丘吉尔-伯恩斯坦方程 热力学 传热 材料科学 无量纲量 热流密度 NTU法 核沸腾 叠加原理 临界热流密度 机械 相关系数 努塞尔数 物理 数学 雷诺数 统计 湍流 数学分析
作者
Nurlaily Agustiarini,Hieu Ngoc Hoang,Jong-Taek Oh,Jong Kyu Kim
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:211: 124188-124188
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124188
摘要

Existing prediction models of flow boiling heat transfer coefficient, such as the well-known superposition, asymptotic, and flow pattern models, provide an applicable method to attain the closest to the true value of the heat transfer coefficient in specific ranges. In this study, heat transfer coefficient data are collected through an experimental study of R1234yf inside a multiport minichannel tube within a mass flux of 50–500 kg/m2s, heat flux of 3–12 kW/m2, saturation temperature of 6 °C, and vapor quality up to 1. The assessment of the heat transfer coefficient is conducted by comparing the heat transfer coefficient of each model with that of R1234yf. In addition, a machine-learning prediction model is proposed to improve the prediction accuracy of the heat transfer coefficient. A machine-learning method could provide an accurate prediction result for the heat transfer coefficient by feeding the program with a factor from heat transfer coefficient data (e.g., a dimensionless number). Therefore, an alternative prediction method could be applied to predict the heat transfer coefficient with the lowest error by providing the setting parameter that fits the pattern of heat transfer coefficient data. In addition, a heat transfer coefficient correlation is proposed to define the only-value result of the machine-learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助慧123采纳,获得10
刚刚
纯真忆安完成签到,获得积分20
刚刚
罗健完成签到 ,获得积分10
刚刚
sukiyaki发布了新的文献求助10
1秒前
XIXIw完成签到 ,获得积分10
1秒前
充电宝应助眉间一把刀采纳,获得10
1秒前
meetyou517应助标致的小霸王采纳,获得10
2秒前
3秒前
桐桐应助Yang采纳,获得10
3秒前
Squirrel发布了新的文献求助10
3秒前
glaze完成签到 ,获得积分10
3秒前
3秒前
淡淡铃铛发布了新的文献求助10
3秒前
JamesPei应助大昭采纳,获得10
4秒前
迅速的凡霜完成签到,获得积分20
4秒前
言无间发布了新的文献求助10
4秒前
Hello应助不停采纳,获得10
4秒前
4秒前
123456完成签到,获得积分20
4秒前
大模型应助XLH采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
xuuu发布了新的文献求助10
6秒前
SHAO应助科研通管家采纳,获得10
6秒前
SHAO应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得30
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得30
7秒前
思源应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288