Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses

医学 随机对照试验 仿真 数据库 梅德林 临床试验 内科学 计算机科学 政治学 经济增长 经济 法学
作者
Shirley Wang,Sebastian Schneeweiß,Jessica M. Franklin,Rishi Desai,William B. Feldman,Elizabeth M. Garry,Robert J. Glynn,Kueiyu Joshua Lin,Julie M. Paik,Elisabetta Patorno,Samy Suissa,Elvira D’Andrea,Dureshahwar Jawaid,Hemin Lee,Ajinkya Pawar,Sushama Kattinakere Sreedhara,Helen Tesfaye,Lily G. Bessette,Luke E. Zabotka,Su Been Lee
出处
期刊:JAMA [American Medical Association]
卷期号:329 (16): 1376-1376 被引量:186
标识
DOI:10.1001/jama.2023.4221
摘要

Importance Nonrandomized studies using insurance claims databases can be analyzed to produce real-world evidence on the effectiveness of medical products. Given the lack of baseline randomization and measurement issues, concerns exist about whether such studies produce unbiased treatment effect estimates. Objective To emulate the design of 30 completed and 2 ongoing randomized clinical trials (RCTs) of medications with database studies using observational analogues of the RCT design parameters (population, intervention, comparator, outcome, time [PICOT]) and to quantify agreement in RCT-database study pairs. Design, Setting, and Participants New-user cohort studies with propensity score matching using 3 US claims databases (Optum Clinformatics, MarketScan, and Medicare). Inclusion-exclusion criteria for each database study were prespecified to emulate the corresponding RCT. RCTs were explicitly selected based on feasibility, including power, key confounders, and end points more likely to be emulated with real-world data. All 32 protocols were registered on ClinicalTrials.gov before conducting analyses. Emulations were conducted from 2017 through 2022. Exposures Therapies for multiple clinical conditions were included. Main Outcomes and Measures Database study emulations focused on the primary outcome of the corresponding RCT. Findings of database studies were compared with RCTs using predefined metrics, including Pearson correlation coefficients and binary metrics based on statistical significance agreement, estimate agreement, and standardized difference. Results In these highly selected RCTs, the overall observed agreement between the RCT and the database emulation results was a Pearson correlation of 0.82 (95% CI, 0.64-0.91), with 72% meeting statistical significance, 66% estimate agreement, and 75% standardized difference agreement. In a post hoc analysis limited to 16 RCTs with closer emulation of trial design and measurements, concordance was higher (Pearson r , 0.93; 95% CI, 0.79-0.97; 94% meeting statistical significance, 88% estimate agreement, 88% standardized difference agreement). Weaker concordance occurred among 16 RCTs for which close emulation of certain design elements that define the research question (PICOT) with data from insurance claims was not possible (Pearson r , 0.53; 95% CI, 0.00-0.83; 50% meeting statistical significance, 50% estimate agreement, 69% standardized difference agreement). Conclusions and Relevance Real-world evidence studies can reach similar conclusions as RCTs when design and measurements can be closely emulated, but this may be difficult to achieve. Concordance in results varied depending on the agreement metric. Emulation differences, chance, and residual confounding can contribute to divergence in results and are difficult to disentangle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助白华苍松采纳,获得10
1秒前
孔大漂亮完成签到,获得积分10
2秒前
3秒前
打打应助HopeStar采纳,获得10
3秒前
3秒前
科研通AI5应助标致小伙采纳,获得30
3秒前
有风发布了新的文献求助10
3秒前
3秒前
路在脚下完成签到 ,获得积分10
3秒前
bkagyin应助GOODYUE采纳,获得10
4秒前
Jasper应助彩色的蓝天采纳,获得10
4秒前
詹严青发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
郭翔完成签到,获得积分10
5秒前
Yeong发布了新的文献求助10
6秒前
jh完成签到 ,获得积分10
6秒前
syq完成签到,获得积分10
7秒前
sfw完成签到,获得积分10
7秒前
8秒前
光亮面包完成签到 ,获得积分10
8秒前
小猪啵比完成签到 ,获得积分10
8秒前
小智发布了新的文献求助10
8秒前
毛慢慢发布了新的文献求助10
8秒前
lilac应助1234567890采纳,获得10
9秒前
OYE发布了新的文献求助10
9秒前
木木发布了新的文献求助10
10秒前
zhy完成签到,获得积分10
11秒前
11秒前
自由的刺猬完成签到,获得积分20
11秒前
潇洒甜瓜发布了新的文献求助10
12秒前
jessie完成签到,获得积分10
12秒前
化学胖子完成签到,获得积分10
12秒前
13秒前
CTL关闭了CTL文献求助
13秒前
詹严青完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759