Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses

医学 随机对照试验 仿真 数据库 梅德林 临床试验 内科学 计算机科学 政治学 经济增长 经济 法学
作者
Shirley Wang,Sebastian Schneeweiß,Jessica M. Franklin,Rishi Desai,William B. Feldman,Elizabeth M. Garry,Robert J. Glynn,Kueiyu Joshua Lin,Julie M. Paik,Elisabetta Patorno,Samy Suissa,Elvira D’Andrea,Dureshahwar Jawaid,Hemin Lee,Ajinkya Pawar,Sushama Kattinakere Sreedhara,Helen Tesfaye,Lily G. Bessette,Luke E. Zabotka,Su Been Lee,Nileesa Gautam,Cassie York,Heidi Zakoul,John Concato,David Martin,Dianne Paraoan,Kenneth Quinto
出处
期刊:JAMA [American Medical Association]
卷期号:329 (16): 1376-1376 被引量:151
标识
DOI:10.1001/jama.2023.4221
摘要

Importance Nonrandomized studies using insurance claims databases can be analyzed to produce real-world evidence on the effectiveness of medical products. Given the lack of baseline randomization and measurement issues, concerns exist about whether such studies produce unbiased treatment effect estimates. Objective To emulate the design of 30 completed and 2 ongoing randomized clinical trials (RCTs) of medications with database studies using observational analogues of the RCT design parameters (population, intervention, comparator, outcome, time [PICOT]) and to quantify agreement in RCT-database study pairs. Design, Setting, and Participants New-user cohort studies with propensity score matching using 3 US claims databases (Optum Clinformatics, MarketScan, and Medicare). Inclusion-exclusion criteria for each database study were prespecified to emulate the corresponding RCT. RCTs were explicitly selected based on feasibility, including power, key confounders, and end points more likely to be emulated with real-world data. All 32 protocols were registered on ClinicalTrials.gov before conducting analyses. Emulations were conducted from 2017 through 2022. Exposures Therapies for multiple clinical conditions were included. Main Outcomes and Measures Database study emulations focused on the primary outcome of the corresponding RCT. Findings of database studies were compared with RCTs using predefined metrics, including Pearson correlation coefficients and binary metrics based on statistical significance agreement, estimate agreement, and standardized difference. Results In these highly selected RCTs, the overall observed agreement between the RCT and the database emulation results was a Pearson correlation of 0.82 (95% CI, 0.64-0.91), with 72% meeting statistical significance, 66% estimate agreement, and 75% standardized difference agreement. In a post hoc analysis limited to 16 RCTs with closer emulation of trial design and measurements, concordance was higher (Pearson r , 0.93; 95% CI, 0.79-0.97; 94% meeting statistical significance, 88% estimate agreement, 88% standardized difference agreement). Weaker concordance occurred among 16 RCTs for which close emulation of certain design elements that define the research question (PICOT) with data from insurance claims was not possible (Pearson r , 0.53; 95% CI, 0.00-0.83; 50% meeting statistical significance, 50% estimate agreement, 69% standardized difference agreement). Conclusions and Relevance Real-world evidence studies can reach similar conclusions as RCTs when design and measurements can be closely emulated, but this may be difficult to achieve. Concordance in results varied depending on the agreement metric. Emulation differences, chance, and residual confounding can contribute to divergence in results and are difficult to disentangle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼怀蕊完成签到,获得积分10
刚刚
1秒前
1秒前
打打应助ZZWSWJ采纳,获得10
1秒前
完美的天空应助Noct采纳,获得30
1秒前
1秒前
天天快乐应助Wzx采纳,获得10
1秒前
科研通AI2S应助意而往南飞采纳,获得10
2秒前
明亮靖柔完成签到,获得积分10
2秒前
2秒前
安静一曲发布了新的文献求助10
2秒前
一一应助小张采纳,获得30
2秒前
Owen应助飞天小女警采纳,获得50
2秒前
共享精神应助坚持采纳,获得10
3秒前
kangsynat发布了新的文献求助10
3秒前
小二郎应助田田采纳,获得10
3秒前
嘿嘿江发布了新的文献求助10
3秒前
欣喜的问柳完成签到,获得积分20
3秒前
AKYDXS完成签到,获得积分20
5秒前
123发布了新的文献求助10
5秒前
6秒前
满意的嚣发布了新的文献求助10
6秒前
JamesPei应助西北望采纳,获得10
7秒前
复杂汲完成签到 ,获得积分10
8秒前
8秒前
TT发布了新的文献求助10
8秒前
9秒前
果汁狸发布了新的文献求助10
9秒前
果果发布了新的文献求助10
9秒前
guoxt完成签到 ,获得积分10
9秒前
9秒前
Hakunamatata完成签到 ,获得积分10
10秒前
orixero应助子铭采纳,获得10
10秒前
kx发布了新的文献求助30
11秒前
11秒前
VV完成签到,获得积分10
11秒前
风中的妖妖完成签到,获得积分10
12秒前
lovexz完成签到,获得积分10
12秒前
12秒前
胡里奥发布了新的文献求助10
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Brave Genius 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221970
求助须知:如何正确求助?哪些是违规求助? 2870660
关于积分的说明 8171566
捐赠科研通 2537658
什么是DOI,文献DOI怎么找? 1369566
科研通“疑难数据库(出版商)”最低求助积分说明 645546
邀请新用户注册赠送积分活动 619234