Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification

图形 高光谱成像 模式识别(心理学) 计算机科学 人工智能 空间网络 卷积(计算机科学) 数学 理论计算机科学 人工神经网络 几何学
作者
Di Wang,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12924-12937 被引量:11
标识
DOI:10.1109/tnnls.2023.3265560
摘要

Convolutional neural networks (CNNs) have been widely applied to hyperspectral image classification (HSIC). However, traditional convolutions can not effectively extract features for objects with irregular distributions. Recent methods attempt to address this issue by performing graph convolutions on spatial topologies, but fixed graph structures and local perceptions limit their performances. To tackle these problems, in this article, different from previous approaches, we perform the superpixel generation on intermediate features during network training to adaptively produce homogeneous regions, obtain graph structures, and further generate spatial descriptors, which are served as graph nodes. Besides spatial objects, we also explore the graph relationships between channels by reasonably aggregating channels to generate spectral descriptors. The adjacent matrices in these graph convolutions are obtained by considering the relationships among all descriptors to realize global perceptions. By combining the extracted spatial and spectral graph features, we finally obtain a spectral-spatial graph reasoning network (SSGRN). The spatial and spectral parts of SSGRN are separately called spatial and spectral graph reasoning subnetworks. Comprehensive experiments on four public datasets demonstrate the competitiveness of the proposed methods compared with other state-of-the-art graph convolution-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
研友_VZG7GZ应助好好学习采纳,获得10
2秒前
和谐断天发布了新的文献求助10
2秒前
简艾发布了新的文献求助10
3秒前
慕青应助Carpe采纳,获得10
3秒前
cc完成签到,获得积分20
4秒前
Jian完成签到 ,获得积分10
4秒前
今后应助舒夜采纳,获得50
4秒前
5秒前
哇哦完成签到,获得积分10
5秒前
妖娆完成签到,获得积分10
5秒前
6秒前
6秒前
zhugepengju发布了新的文献求助10
6秒前
6秒前
苗笑卉发布了新的文献求助10
8秒前
温wen完成签到,获得积分10
8秒前
张志远发布了新的文献求助10
8秒前
赵慧丽发布了新的文献求助20
9秒前
xl发布了新的文献求助10
9秒前
10秒前
miko发布了新的文献求助10
10秒前
彪壮的机器猫完成签到 ,获得积分10
10秒前
zqz0703发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
SciGPT应助优雅的千雁采纳,获得10
11秒前
房房不慌完成签到 ,获得积分10
11秒前
soon发布了新的文献求助10
11秒前
缥缈南风发布了新的文献求助10
11秒前
CipherSage应助烟雨平生采纳,获得10
11秒前
Ray完成签到,获得积分10
11秒前
科目三应助和谐断天采纳,获得10
12秒前
Dzinver发布了新的文献求助10
12秒前
12秒前
12秒前
nishishui完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556846
求助须知:如何正确求助?哪些是违规求助? 3984680
关于积分的说明 12336745
捐赠科研通 3654730
什么是DOI,文献DOI怎么找? 2013293
邀请新用户注册赠送积分活动 1048292
科研通“疑难数据库(出版商)”最低求助积分说明 936733