Spatiotemporal Transmission Model to Simulate an Interregional Epidemic Spreading

地理空间分析 人口 正确性 计算机科学 地理 数据科学 运筹学 地图学 工程类 人口学 社会学 程序设计语言
作者
Zitong Li,Haiping Zhang,Chen Ding,Canyu Chen,Renyu Chen,Nuozhou Shen,Huang Yi,Liyang Xiong,Guoan Tang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:113 (9): 2084-2107 被引量:6
标识
DOI:10.1080/24694452.2023.2216296
摘要

Infectious disease spread is a spatiotemporal process with significant regional differences that can be affected by multiple factors, such as human mobility and manner of contact. From a geographical perspective, the simulation and analysis of an epidemic can promote an understanding of the contagion mechanism and lead to an accurate prediction of its future trends. The existing methods fail to consider the mutual feedback mechanism of heterogeneities between the interregional population interaction and the regional transmission conditions (e.g., contact probability and the effective reproduction number). This disadvantage oversimplifies the transmission process and reduces the accuracy of the simulation results. To fill this gap, a general model considering the spatiotemporal characteristics is proposed, which includes compartment modeling of population categories, flow interaction modeling of population movements, and spatial spread modeling of an infectious disease. Furthermore, the correctness of a theoretical hypothesis for modeling and prediction accuracy of this model was tested with a synthetic data set and a real-world COVID-19 data set in China, respectively. The theoretical contribution of this article was to verify that the interplay of multiple types of geospatial heterogeneities dramatically influences the spatial spread of infectious disease. This model provides an effective method for solving infectious disease simulation problems involving dynamic, complex spatiotemporal processes of geographical elements, such as optimization of lockdown strategies, analyses of the medical resource carrying capacity, and risk assessment of herd immunity from the perspective of geography. Key Words: geospatial heterogeneities, health geography, interregional population interaction, spatiotemporal analysis, transmission modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斩渔发布了新的文献求助10
1秒前
xyy完成签到,获得积分10
1秒前
Niki发布了新的文献求助20
1秒前
完美世界应助炙热果汁采纳,获得10
1秒前
螺内酯发布了新的文献求助10
1秒前
1秒前
巧克力完成签到,获得积分10
2秒前
2秒前
Maxwell完成签到,获得积分10
2秒前
Wen发布了新的文献求助10
2秒前
薏米发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
郭濹涵发布了新的文献求助10
3秒前
4秒前
阳光彩虹小白马关注了科研通微信公众号
4秒前
星辰大海应助QIQI采纳,获得10
4秒前
875259完成签到,获得积分10
5秒前
5秒前
ding应助恩恩天天开心采纳,获得10
5秒前
打打应助现代的糖豆采纳,获得10
5秒前
科目三应助第七个星球采纳,获得10
5秒前
Sue完成签到 ,获得积分10
5秒前
英姑应助HEANZ采纳,获得10
5秒前
梧桐完成签到,获得积分10
5秒前
盒子完成签到,获得积分10
5秒前
Yuki发布了新的文献求助10
6秒前
tangzanwayne发布了新的文献求助10
6秒前
睡觉大王完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
精明的飞槐完成签到,获得积分10
7秒前
YUE完成签到,获得积分10
7秒前
xyy发布了新的文献求助10
7秒前
8秒前
8秒前
小二郎应助qiaoyun采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894