Spatiotemporal Transmission Model to Simulate an Interregional Epidemic Spreading

地理空间分析 人口 正确性 计算机科学 地理 数据科学 运筹学 地图学 工程类 人口学 社会学 程序设计语言
作者
Zitong Li,Haiping Zhang,Chen Ding,Canyu Chen,Renyu Chen,Nuozhou Shen,Huang Yi,Liyang Xiong,Guoan Tang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:113 (9): 2084-2107 被引量:4
标识
DOI:10.1080/24694452.2023.2216296
摘要

Infectious disease spread is a spatiotemporal process with significant regional differences that can be affected by multiple factors, such as human mobility and manner of contact. From a geographical perspective, the simulation and analysis of an epidemic can promote an understanding of the contagion mechanism and lead to an accurate prediction of its future trends. The existing methods fail to consider the mutual feedback mechanism of heterogeneities between the interregional population interaction and the regional transmission conditions (e.g., contact probability and the effective reproduction number). This disadvantage oversimplifies the transmission process and reduces the accuracy of the simulation results. To fill this gap, a general model considering the spatiotemporal characteristics is proposed, which includes compartment modeling of population categories, flow interaction modeling of population movements, and spatial spread modeling of an infectious disease. Furthermore, the correctness of a theoretical hypothesis for modeling and prediction accuracy of this model was tested with a synthetic data set and a real-world COVID-19 data set in China, respectively. The theoretical contribution of this article was to verify that the interplay of multiple types of geospatial heterogeneities dramatically influences the spatial spread of infectious disease. This model provides an effective method for solving infectious disease simulation problems involving dynamic, complex spatiotemporal processes of geographical elements, such as optimization of lockdown strategies, analyses of the medical resource carrying capacity, and risk assessment of herd immunity from the perspective of geography. Key Words: geospatial heterogeneities, health geography, interregional population interaction, spatiotemporal analysis, transmission modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
1秒前
1秒前
领导范儿应助junzilan采纳,获得10
2秒前
打打应助激动的一手采纳,获得10
2秒前
酷波er应助艺玲采纳,获得10
3秒前
longtengfei发布了新的文献求助10
3秒前
4秒前
4秒前
ZL发布了新的文献求助10
6秒前
luca发布了新的文献求助10
6秒前
ruby发布了新的文献求助10
6秒前
沉静的颦发布了新的文献求助10
7秒前
7秒前
cjy完成签到,获得积分10
7秒前
7秒前
8秒前
Zoe完成签到,获得积分10
8秒前
8秒前
8秒前
任性完成签到,获得积分10
8秒前
an发布了新的文献求助10
9秒前
9秒前
领导范儿应助袅袅采纳,获得10
9秒前
若狂完成签到,获得积分10
9秒前
Gyy完成签到,获得积分10
10秒前
10秒前
10秒前
上官若男应助hu970采纳,获得10
10秒前
11秒前
妮儿发布了新的文献求助10
12秒前
12秒前
Aile。完成签到,获得积分10
12秒前
12秒前
霹雳游侠完成签到,获得积分10
13秒前
hjj发布了新的文献求助10
15秒前
gg完成签到,获得积分10
15秒前
狂野觅云发布了新的文献求助10
15秒前
坚强的广山应助iRan采纳,获得200
15秒前
15秒前
余姚发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759