摘要
Devices with microchannels are relatively new, and many correlations are not yet developed to design them efficiently. In microchannels, the flow regime is primarily laminar, where entrance length may occupy a significant section of the flow channel. Therefore, several computational fluid dynamic simulations were performed in this research to characterize the developing flow regime. The new correlations of entrance length were developed from a vast number of numerical results obtained from these simulations. A three-dimensional laminar flow for 37 Reynolds numbers (0.1, 0.2, …, 1, 2, …, 10, 20, …, 100, 200, …, 1000), primarily in low regime with water flow through six rectangular microchannels (aspect ratio: 1, 0.75, 0.5, 0.25, 0.2, 0.125), has been modeled, conducting 222 simulations to characterize flow developments and ascertain progressive velocity profile shapes. Examination of the fully developed flow condition was considered using traditional criteria such as velocity and incremental pressure drop number. Additionally, a new criterion was presented based on fRe. Numerical results from the present simulations were validated by comparing the fully developed velocity profile, friction factor, and hydrodynamic entrance length for Re > 100 in rectangular channels, for which accurate data are available in the literature. There is a need for hydrodynamic entrance length correlations in a low Reynolds number regime (Re < 100). So, the model was run numerous times to generate a vast amount of numerical data that yielded two new correlations based on the velocity and fRe criteria.