Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma

医学 肝细胞癌 接收机工作特性 阶段(地层学) 尤登J统计 实体瘤疗效评价标准 队列 放射科 切断 曲线下面积 核医学 内科学 肿瘤科 临床试验 物理 古生物学 生物 量子力学 临床研究阶段
作者
Zhongxing Shi,Chang-Fu Li,Lifeng Zhao,Zhongqi Sun,Liming Cui,Yanjie Xin,Dongqing Wang,Tan-Rong Kang,Huijie Jiang
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:23 (4): 361-369 被引量:9
标识
DOI:10.1016/j.hbpd.2023.06.011
摘要

According to clinical practice guidelines, transarterial chemoembolization (TACE) is the standard treatment modality for patients with intermediate-stage hepatocellular carcinoma (HCC). Early prediction of treatment response can help patients choose a reasonable treatment plan. This study aimed to investigate the value of the radiomic-clinical model in predicting the efficacy of the first TACE treatment for HCC to prolong patient survival. A total of 164 patients with HCC who underwent the first TACE from January 2017 to September 2021 were analyzed. The tumor response was assessed by modified response evaluation criteria in solid tumors (mRECIST), and the response of the first TACE to each session and its correlation with overall survival were evaluated. The radiomic signatures associated with the treatment response were identified by the least absolute shrinkage and selection operator (LASSO), and four machine learning models were built with different types of regions of interest (ROIs) (tumor and corresponding tissues) and the model with the best performance was selected. The predictive performance was assessed with receiver operating characteristic (ROC) curves and calibration curves. Of all the models, the random forest (RF) model with peritumor (+10 mm) radiomic signatures had the best performance [area under ROC curve (AUC) = 0.964 in the training cohort, AUC = 0.949 in the validation cohort]. The RF model was used to calculate the radiomic score (Rad-score), and the optimal cutoff value (0.34) was calculated according to the Youden's index. Patients were then divided into a high-risk group (Rad-score > 0.34) and a low-risk group (Rad-score ≤ 0.34), and a nomogram model was successfully established to predict treatment response. The predicted treatment response also allowed for significant discrimination of Kaplan-Meier curves. Multivariate Cox regression identified six independent prognostic factors for overall survival, including male [hazard ratio (HR) = 0.500, 95% confidence interval (CI): 0.260–0.962, P = 0.038], alpha-fetoprotein (HR = 1.003, 95% CI: 1.002–1.004, P < 0.001), alanine aminotransferase (HR = 1.003, 95% CI: 1.001–1.005, P = 0.025), performance status (HR = 2.400, 95% CI: 1.200–4.800, P = 0.013), the number of TACE sessions (HR = 0.870, 95% CI: 0.780–0.970, P = 0.012) and Rad-score (HR = 3.480, 95% CI: 1.416–8.552, P = 0.007). The radiomic signatures and clinical factors can be well-used to predict the response of HCC patients to the first TACE and may help identify the patients most likely to benefit from TACE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mininine完成签到,获得积分10
刚刚
皮代谷完成签到,获得积分10
刚刚
1秒前
1秒前
大气映天发布了新的文献求助10
1秒前
1秒前
2秒前
yu完成签到,获得积分10
2秒前
2秒前
动听的柚子完成签到,获得积分10
2秒前
Kedr完成签到,获得积分10
3秒前
zz完成签到,获得积分10
4秒前
Akim应助含蓄觅山采纳,获得10
4秒前
luokm完成签到,获得积分10
4秒前
refd发布了新的文献求助10
4秒前
谨慎的大门完成签到 ,获得积分10
5秒前
奖品肉麻膏耶完成签到 ,获得积分10
5秒前
5秒前
彭于晏应助lwq采纳,获得10
5秒前
无尘泪发布了新的文献求助20
5秒前
852应助半个小屌丝采纳,获得10
5秒前
5秒前
宁戎完成签到,获得积分10
6秒前
asdasd发布了新的文献求助10
6秒前
学术小白发布了新的文献求助10
7秒前
7秒前
bc应助冷静的冷珍采纳,获得30
7秒前
chenchen__发布了新的文献求助10
7秒前
7秒前
求求了完成签到,获得积分10
7秒前
Ava应助大吃一筐馒头采纳,获得10
8秒前
8秒前
宁戎发布了新的文献求助10
8秒前
az发布了新的文献求助10
10秒前
一只猪发布了新的文献求助10
10秒前
虚心焦发布了新的文献求助10
11秒前
12秒前
he发布了新的文献求助10
12秒前
777发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844