Dual-GCN-based deep clustering with triplet contrast for ScRNA-seq data analysis

聚类分析 计算机科学 降维 人工智能 平滑的 模式识别(心理学) 高维数据聚类 相关聚类 嵌入 图形 数据挖掘 理论计算机科学 计算机视觉
作者
Linjie Wang,Xin Min,Weidong Xie,Rui Wang,Kun Yu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:106: 107924-107924 被引量:2
标识
DOI:10.1016/j.compbiolchem.2023.107924
摘要

Single-cell RNA sequencing (ScRNA-seq) technology reveals gene expression information at the cellular level. The critical tasks in ScRNA-seq data analysis are clustering and dimensionality reduction. Recent deep clustering algorithms are used to optimize the two tasks jointly, and their variations, graph-based deep clustering algorithms, are used to capture and preserve topological information in the process. However, the existing graph-based deep clustering algorithms ignore the distribution information of nodes when constructing cell graphs which leads to incomplete information in the embedding representation; and graph convolutional networks (GCN), which are most commonly used, often suffer from over-smoothing that leads to high sample similarity in the embedding representation and then poor clustering performance. Here, the dual-GCN-based deep clustering with Triplet contrast (scDGDC) is proposed for dimensionality reduction and clustering of scRNA-seq data. Two critical components are dual-GCN-based encoder for capturing more comprehensive topological information and triplet contrast for reducing GCN over-smoothing. The two components improve the dimensionality reduction and clustering performance of scDGDC in terms of information acquisition and model optimization, respectively. The experiments on eight real ScRNA-seq datasets showed that scDGDC achieves excellent performance for both clustering and dimensionality reduction tasks and is high robustness to parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助纯真忆安采纳,获得10
刚刚
顺顺发布了新的文献求助10
刚刚
刚刚
1秒前
nan完成签到,获得积分10
1秒前
1秒前
自信的叫兽完成签到,获得积分10
1秒前
淡然老太完成签到,获得积分10
2秒前
2秒前
哟哟哟完成签到,获得积分10
3秒前
思源应助背后的机器猫采纳,获得10
3秒前
惠惠发布了新的文献求助10
3秒前
AFEUWOS01完成签到,获得积分20
4秒前
冷傲的樱桃完成签到,获得积分10
4秒前
fighting发布了新的文献求助10
4秒前
zxw发布了新的文献求助10
5秒前
赵赵赵完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
唐人雄完成签到,获得积分10
6秒前
xctdyl1992完成签到,获得积分20
6秒前
6秒前
丰知然应助周凡淇采纳,获得10
6秒前
丰知然应助周凡淇采纳,获得10
6秒前
科研小白花完成签到,获得积分20
7秒前
纯真忆安完成签到,获得积分20
7秒前
7秒前
长孙归尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
sweetbearm应助通~采纳,获得10
8秒前
8秒前
青木蓝发布了新的文献求助10
9秒前
9秒前
9秒前
李健的粉丝团团长应助yzz采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794