Automated diagnosis of epileptic seizures using EEG image representations and deep learning

人工智能 计算机科学 脑电图 支持向量机 模式识别(心理学) 机器学习 特征提取 特征选择 分类 深度学习 学习迁移 心理学 精神科
作者
Taranjit Kaur,Tapan Kumar Gandhi
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100139-100139 被引量:7
标识
DOI:10.1016/j.neuri.2023.100139
摘要

Background: The identification of seizure and its complex waveforms in electroencephalography (EEG) through manual examination is time consuming, tedious, and susceptible to human mistakes. These issues have prompted the design of an automated seizure detection system that can assist the neurophysiologists by providing a fast and accurate analysis. Methods: Existing automated seizure detection systems are either machine learning based or deep learning based. Machine learning based algorithms employ handcrafted features with sophisticated feature selection approaches. As a result of which their performance varies with the choice of the feature extraction and selection techniques employed. On the other hand, deep learning-based methods automatically deduce the best subset of features required for the categorization task but they are computationally expensive and lacks generalization on clinical EEG datasets. To address the above stated limitations and motivated by the advantage of continuous wavelet transform's (CWT) in elucidating the non-stationary nature of the EEG signals in a better way, we propose an approach based on EEG image representations (constructed via applying WT at different scale and time intervals) and transfer learning for seizure detection. Firstly, the pre-trained model is fine-tuned on the EEG image representations and thereafter features are extracted from the trained model by performing activations on different layers of the network. Subsequently, the features are passed through a Support Vector Machine (SVM) for categorization using a 10-fold data partitioning scheme. Results and comparison with existing methods: The proposed mechanism results in a ceiling level of classification performance (accuracy=99.50/98.67, sensitivity=100/100 & specificity=99/96) for both the standard and the clinical dataset that are better than the existing state-of-the art works. Conclusion: The rapid advancement in the field of deep learning has created a paradigm shift in automated diagnosis of epilepsy. The proposed tool has effectually marked the relevant EEG segments for the clinician to review thereby reducing the time burden in scanning the long duration EEG records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可完成签到 ,获得积分10
刚刚
zho应助ZZY采纳,获得10
1秒前
优雅的雪一完成签到 ,获得积分20
1秒前
夏侯三问发布了新的文献求助10
2秒前
冰山未闯发布了新的文献求助200
2秒前
2秒前
Liam发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
华仔应助称心嫣娆采纳,获得10
5秒前
花粉过敏发布了新的文献求助10
6秒前
Qiang发布了新的文献求助10
6秒前
优雅的雪一关注了科研通微信公众号
6秒前
hehe应助酷炫翠桃采纳,获得10
6秒前
kangyan完成签到,获得积分20
6秒前
qin希望应助江停采纳,获得10
9秒前
kangyan发布了新的文献求助10
9秒前
不配.应助勤恳的饭饭采纳,获得20
9秒前
moon完成签到,获得积分20
10秒前
华仔应助酚酞v采纳,获得10
10秒前
10秒前
Singularity应助haowu采纳,获得30
10秒前
kkkkkkk_应助haowu采纳,获得10
10秒前
CipherSage应助haowu采纳,获得10
10秒前
SciGPT应助haowu采纳,获得10
10秒前
科目三应助haowu采纳,获得10
10秒前
周老二完成签到 ,获得积分10
12秒前
乐乐应助Aki采纳,获得10
12秒前
郁金香没有你的浴巾香完成签到,获得积分10
12秒前
打打应助萤火虫采纳,获得10
13秒前
14秒前
王顺喜完成签到,获得积分10
14秒前
慕青应助星空_采纳,获得20
15秒前
FashionBoy应助wenze采纳,获得10
16秒前
脆香可丽饼完成签到,获得积分10
16秒前
17秒前
花粉过敏完成签到,获得积分10
17秒前
hmm完成签到,获得积分20
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297