亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated diagnosis of epileptic seizures using EEG image representations and deep learning

人工智能 计算机科学 脑电图 支持向量机 模式识别(心理学) 机器学习 特征提取 特征选择 分类 深度学习 学习迁移 心理学 精神科
作者
Taranjit Kaur,Tapan Kumar Gandhi
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100139-100139 被引量:7
标识
DOI:10.1016/j.neuri.2023.100139
摘要

Background: The identification of seizure and its complex waveforms in electroencephalography (EEG) through manual examination is time consuming, tedious, and susceptible to human mistakes. These issues have prompted the design of an automated seizure detection system that can assist the neurophysiologists by providing a fast and accurate analysis. Methods: Existing automated seizure detection systems are either machine learning based or deep learning based. Machine learning based algorithms employ handcrafted features with sophisticated feature selection approaches. As a result of which their performance varies with the choice of the feature extraction and selection techniques employed. On the other hand, deep learning-based methods automatically deduce the best subset of features required for the categorization task but they are computationally expensive and lacks generalization on clinical EEG datasets. To address the above stated limitations and motivated by the advantage of continuous wavelet transform's (CWT) in elucidating the non-stationary nature of the EEG signals in a better way, we propose an approach based on EEG image representations (constructed via applying WT at different scale and time intervals) and transfer learning for seizure detection. Firstly, the pre-trained model is fine-tuned on the EEG image representations and thereafter features are extracted from the trained model by performing activations on different layers of the network. Subsequently, the features are passed through a Support Vector Machine (SVM) for categorization using a 10-fold data partitioning scheme. Results and comparison with existing methods: The proposed mechanism results in a ceiling level of classification performance (accuracy=99.50/98.67, sensitivity=100/100 & specificity=99/96) for both the standard and the clinical dataset that are better than the existing state-of-the art works. Conclusion: The rapid advancement in the field of deep learning has created a paradigm shift in automated diagnosis of epilepsy. The proposed tool has effectually marked the relevant EEG segments for the clinician to review thereby reducing the time burden in scanning the long duration EEG records.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助yiyilan采纳,获得10
1秒前
丘比特应助yyyy采纳,获得10
6秒前
拾柒完成签到 ,获得积分10
9秒前
13秒前
yyyy发布了新的文献求助10
19秒前
22秒前
璃鱼完成签到 ,获得积分10
23秒前
j7完成签到 ,获得积分10
25秒前
kw98完成签到 ,获得积分10
37秒前
mmyhn应助科研通管家采纳,获得10
37秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
37秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
天凉王破完成签到 ,获得积分10
43秒前
葡紫明完成签到 ,获得积分10
54秒前
59秒前
Paris发布了新的文献求助10
1分钟前
GlockieZhao完成签到,获得积分10
1分钟前
1分钟前
啊哒吸哇完成签到,获得积分10
1分钟前
上善若水完成签到 ,获得积分10
1分钟前
sleeplala完成签到 ,获得积分10
1分钟前
1分钟前
yiyilan发布了新的文献求助10
1分钟前
大模型应助yiyilan采纳,获得10
1分钟前
1分钟前
1分钟前
CC完成签到 ,获得积分10
2分钟前
去海边拾贝壳完成签到,获得积分10
2分钟前
椰啵啵完成签到 ,获得积分10
2分钟前
2分钟前
chenxuuu完成签到,获得积分10
2分钟前
怡然的姒完成签到,获得积分10
2分钟前
2分钟前
LMX完成签到 ,获得积分10
2分钟前
2分钟前
调皮乌发布了新的文献求助10
2分钟前
2分钟前
mmyhn应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534156
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582228
捐赠科研通 4562402
什么是DOI,文献DOI怎么找? 2500167
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450832