Automated diagnosis of epileptic seizures using EEG image representations and deep learning

人工智能 计算机科学 脑电图 支持向量机 模式识别(心理学) 机器学习 特征提取 特征选择 分类 深度学习 学习迁移 精神科 心理学
作者
Taranjit Kaur,Tapan Kumar Gandhi
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100139-100139 被引量:7
标识
DOI:10.1016/j.neuri.2023.100139
摘要

Background: The identification of seizure and its complex waveforms in electroencephalography (EEG) through manual examination is time consuming, tedious, and susceptible to human mistakes. These issues have prompted the design of an automated seizure detection system that can assist the neurophysiologists by providing a fast and accurate analysis. Methods: Existing automated seizure detection systems are either machine learning based or deep learning based. Machine learning based algorithms employ handcrafted features with sophisticated feature selection approaches. As a result of which their performance varies with the choice of the feature extraction and selection techniques employed. On the other hand, deep learning-based methods automatically deduce the best subset of features required for the categorization task but they are computationally expensive and lacks generalization on clinical EEG datasets. To address the above stated limitations and motivated by the advantage of continuous wavelet transform's (CWT) in elucidating the non-stationary nature of the EEG signals in a better way, we propose an approach based on EEG image representations (constructed via applying WT at different scale and time intervals) and transfer learning for seizure detection. Firstly, the pre-trained model is fine-tuned on the EEG image representations and thereafter features are extracted from the trained model by performing activations on different layers of the network. Subsequently, the features are passed through a Support Vector Machine (SVM) for categorization using a 10-fold data partitioning scheme. Results and comparison with existing methods: The proposed mechanism results in a ceiling level of classification performance (accuracy=99.50/98.67, sensitivity=100/100 & specificity=99/96) for both the standard and the clinical dataset that are better than the existing state-of-the art works. Conclusion: The rapid advancement in the field of deep learning has created a paradigm shift in automated diagnosis of epilepsy. The proposed tool has effectually marked the relevant EEG segments for the clinician to review thereby reducing the time burden in scanning the long duration EEG records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助故意的映波采纳,获得10
1秒前
1秒前
海浪发布了新的文献求助10
1秒前
2秒前
爱吃小鱼饼的西柚完成签到,获得积分10
2秒前
3秒前
好好活着发布了新的文献求助10
3秒前
5秒前
脑洞疼应助cccc采纳,获得10
5秒前
zkyyinf_zero发布了新的文献求助10
6秒前
CHAIZH发布了新的文献求助10
7秒前
crazynail完成签到,获得积分10
7秒前
7秒前
小萝卜莉完成签到,获得积分10
8秒前
cocopepsi完成签到,获得积分10
8秒前
9秒前
今天吃什么呢完成签到,获得积分10
9秒前
10秒前
喽喽发布了新的文献求助10
10秒前
12秒前
12秒前
科研通AI5应助饼藏采纳,获得10
12秒前
过pass发布了新的文献求助10
14秒前
wyp发布了新的文献求助10
15秒前
666应助渊思采纳,获得10
16秒前
16秒前
16秒前
石友瑶发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
赵云江完成签到,获得积分10
20秒前
没有发布了新的文献求助10
21秒前
纯纯么么哒完成签到,获得积分10
21秒前
retortt发布了新的文献求助10
21秒前
22秒前
岁岁平安发布了新的文献求助10
22秒前
22秒前
共享精神应助李Sir采纳,获得10
23秒前
靓丽的芝麻完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528