Automated diagnosis of epileptic seizures using EEG image representations and deep learning

人工智能 计算机科学 脑电图 支持向量机 模式识别(心理学) 机器学习 特征提取 特征选择 分类 深度学习 学习迁移 心理学 精神科
作者
Taranjit Kaur,Tapan Kumar Gandhi
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100139-100139 被引量:7
标识
DOI:10.1016/j.neuri.2023.100139
摘要

Background: The identification of seizure and its complex waveforms in electroencephalography (EEG) through manual examination is time consuming, tedious, and susceptible to human mistakes. These issues have prompted the design of an automated seizure detection system that can assist the neurophysiologists by providing a fast and accurate analysis. Methods: Existing automated seizure detection systems are either machine learning based or deep learning based. Machine learning based algorithms employ handcrafted features with sophisticated feature selection approaches. As a result of which their performance varies with the choice of the feature extraction and selection techniques employed. On the other hand, deep learning-based methods automatically deduce the best subset of features required for the categorization task but they are computationally expensive and lacks generalization on clinical EEG datasets. To address the above stated limitations and motivated by the advantage of continuous wavelet transform's (CWT) in elucidating the non-stationary nature of the EEG signals in a better way, we propose an approach based on EEG image representations (constructed via applying WT at different scale and time intervals) and transfer learning for seizure detection. Firstly, the pre-trained model is fine-tuned on the EEG image representations and thereafter features are extracted from the trained model by performing activations on different layers of the network. Subsequently, the features are passed through a Support Vector Machine (SVM) for categorization using a 10-fold data partitioning scheme. Results and comparison with existing methods: The proposed mechanism results in a ceiling level of classification performance (accuracy=99.50/98.67, sensitivity=100/100 & specificity=99/96) for both the standard and the clinical dataset that are better than the existing state-of-the art works. Conclusion: The rapid advancement in the field of deep learning has created a paradigm shift in automated diagnosis of epilepsy. The proposed tool has effectually marked the relevant EEG segments for the clinician to review thereby reducing the time burden in scanning the long duration EEG records.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助tuanheqi采纳,获得20
刚刚
xubobo完成签到,获得积分10
1秒前
嘿嘿发布了新的文献求助10
2秒前
经久发布了新的文献求助10
2秒前
啦啦啦发布了新的文献求助10
3秒前
yyyg发布了新的文献求助50
3秒前
手可摘星辰完成签到,获得积分10
3秒前
小蘑菇应助悲凉的新筠采纳,获得10
4秒前
woxbin发布了新的文献求助10
4秒前
聂志鹏发布了新的文献求助10
5秒前
小二郎应助大气的砖家采纳,获得10
5秒前
闫辰龙发布了新的文献求助10
5秒前
5秒前
6秒前
小石头完成签到,获得积分10
6秒前
jgjghjghj完成签到,获得积分10
7秒前
Hello应助繁荣的念双采纳,获得10
8秒前
情怀应助auguscai采纳,获得10
9秒前
yyyg完成签到,获得积分10
9秒前
清衍发布了新的文献求助10
10秒前
11秒前
13秒前
丘比特应助山东及时雨采纳,获得10
13秒前
无名草0502完成签到 ,获得积分10
13秒前
孙小雨完成签到,获得积分10
13秒前
天天快乐应助weddcf采纳,获得10
13秒前
14秒前
浮游应助小于采纳,获得10
15秒前
BowieHuang应助小于采纳,获得10
15秒前
jason发布了新的文献求助10
15秒前
applecat147完成签到,获得积分10
16秒前
momo完成签到,获得积分10
16秒前
16秒前
欣慰傲薇发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
秀丽小猫咪举报wky求助涉嫌违规
17秒前
李健的小迷弟应助闫辰龙采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098