Automated diagnosis of epileptic seizures using EEG image representations and deep learning

人工智能 计算机科学 脑电图 支持向量机 模式识别(心理学) 机器学习 特征提取 特征选择 分类 深度学习 学习迁移 心理学 精神科
作者
Taranjit Kaur,Tapan Kumar Gandhi
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100139-100139 被引量:7
标识
DOI:10.1016/j.neuri.2023.100139
摘要

Background: The identification of seizure and its complex waveforms in electroencephalography (EEG) through manual examination is time consuming, tedious, and susceptible to human mistakes. These issues have prompted the design of an automated seizure detection system that can assist the neurophysiologists by providing a fast and accurate analysis. Methods: Existing automated seizure detection systems are either machine learning based or deep learning based. Machine learning based algorithms employ handcrafted features with sophisticated feature selection approaches. As a result of which their performance varies with the choice of the feature extraction and selection techniques employed. On the other hand, deep learning-based methods automatically deduce the best subset of features required for the categorization task but they are computationally expensive and lacks generalization on clinical EEG datasets. To address the above stated limitations and motivated by the advantage of continuous wavelet transform's (CWT) in elucidating the non-stationary nature of the EEG signals in a better way, we propose an approach based on EEG image representations (constructed via applying WT at different scale and time intervals) and transfer learning for seizure detection. Firstly, the pre-trained model is fine-tuned on the EEG image representations and thereafter features are extracted from the trained model by performing activations on different layers of the network. Subsequently, the features are passed through a Support Vector Machine (SVM) for categorization using a 10-fold data partitioning scheme. Results and comparison with existing methods: The proposed mechanism results in a ceiling level of classification performance (accuracy=99.50/98.67, sensitivity=100/100 & specificity=99/96) for both the standard and the clinical dataset that are better than the existing state-of-the art works. Conclusion: The rapid advancement in the field of deep learning has created a paradigm shift in automated diagnosis of epilepsy. The proposed tool has effectually marked the relevant EEG segments for the clinician to review thereby reducing the time burden in scanning the long duration EEG records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SciGPT应助天阳采纳,获得10
刚刚
1秒前
starfish发布了新的文献求助10
1秒前
Antigen发布了新的文献求助10
1秒前
1秒前
狸花小喵完成签到,获得积分10
3秒前
lu2025完成签到,获得积分20
3秒前
秋月明完成签到,获得积分10
3秒前
4秒前
尤寄风发布了新的文献求助10
4秒前
starfish发布了新的文献求助10
5秒前
善学以致用应助dckiop采纳,获得10
6秒前
爹爹发布了新的文献求助10
6秒前
6秒前
6秒前
JamesPei应助eth采纳,获得10
7秒前
lalala发布了新的文献求助10
7秒前
浮游应助研友_LMBAXn采纳,获得10
8秒前
8秒前
CipherSage应助鲸落采纳,获得10
9秒前
霸气的小土豆完成签到 ,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
Fenact完成签到,获得积分10
13秒前
哦啦啦发布了新的文献求助10
13秒前
3244190850发布了新的文献求助10
13秒前
无花果应助luyuanchangchun采纳,获得10
14秒前
16秒前
笑点低的凡之完成签到,获得积分10
16秒前
Dr大壮发布了新的文献求助10
17秒前
Ava应助陈益凡采纳,获得10
17秒前
18秒前
18秒前
18秒前
JamesPei应助Estrella采纳,获得10
19秒前
duohao2023完成签到,获得积分10
20秒前
碧蓝丹烟完成签到 ,获得积分10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453448
求助须知:如何正确求助?哪些是违规求助? 4561113
关于积分的说明 14280735
捐赠科研通 4485117
什么是DOI,文献DOI怎么找? 2456483
邀请新用户注册赠送积分活动 1447238
关于科研通互助平台的介绍 1422640