Automated diagnosis of epileptic seizures using EEG image representations and deep learning

人工智能 计算机科学 脑电图 支持向量机 模式识别(心理学) 机器学习 特征提取 特征选择 分类 深度学习 学习迁移 心理学 精神科
作者
Taranjit Kaur,Tapan Kumar Gandhi
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100139-100139 被引量:7
标识
DOI:10.1016/j.neuri.2023.100139
摘要

Background: The identification of seizure and its complex waveforms in electroencephalography (EEG) through manual examination is time consuming, tedious, and susceptible to human mistakes. These issues have prompted the design of an automated seizure detection system that can assist the neurophysiologists by providing a fast and accurate analysis. Methods: Existing automated seizure detection systems are either machine learning based or deep learning based. Machine learning based algorithms employ handcrafted features with sophisticated feature selection approaches. As a result of which their performance varies with the choice of the feature extraction and selection techniques employed. On the other hand, deep learning-based methods automatically deduce the best subset of features required for the categorization task but they are computationally expensive and lacks generalization on clinical EEG datasets. To address the above stated limitations and motivated by the advantage of continuous wavelet transform's (CWT) in elucidating the non-stationary nature of the EEG signals in a better way, we propose an approach based on EEG image representations (constructed via applying WT at different scale and time intervals) and transfer learning for seizure detection. Firstly, the pre-trained model is fine-tuned on the EEG image representations and thereafter features are extracted from the trained model by performing activations on different layers of the network. Subsequently, the features are passed through a Support Vector Machine (SVM) for categorization using a 10-fold data partitioning scheme. Results and comparison with existing methods: The proposed mechanism results in a ceiling level of classification performance (accuracy=99.50/98.67, sensitivity=100/100 & specificity=99/96) for both the standard and the clinical dataset that are better than the existing state-of-the art works. Conclusion: The rapid advancement in the field of deep learning has created a paradigm shift in automated diagnosis of epilepsy. The proposed tool has effectually marked the relevant EEG segments for the clinician to review thereby reducing the time burden in scanning the long duration EEG records.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
pbj发布了新的文献求助10
1秒前
1秒前
TiAmo完成签到,获得积分10
1秒前
2秒前
lxdfrank发布了新的文献求助10
2秒前
5秒前
balko发布了新的文献求助10
5秒前
卓卓完成签到,获得积分10
5秒前
沙心发布了新的文献求助10
6秒前
6秒前
咩咩发布了新的文献求助10
6秒前
6秒前
Adonis完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
mm完成签到 ,获得积分10
9秒前
10秒前
隐形曼青应助pbj采纳,获得10
11秒前
深情安青应助顺心的冬莲采纳,获得10
11秒前
ya发布了新的文献求助10
11秒前
13秒前
Satellites完成签到,获得积分10
13秒前
13秒前
15秒前
shenlan完成签到,获得积分10
15秒前
15秒前
科研通AI6.1应助kushdw采纳,获得10
16秒前
yitian完成签到 ,获得积分10
16秒前
郭佳怡完成签到,获得积分10
16秒前
XUU关闭了XUU文献求助
18秒前
小明发布了新的文献求助10
18秒前
18秒前
19秒前
cjh发布了新的文献求助10
19秒前
19秒前
bkagyin应助棠棠采纳,获得10
20秒前
bkagyin应助顾翩翩采纳,获得10
20秒前
郭佳怡发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792