Deep learning assisted physics-based modeling of aluminum extraction process

计算机科学 过程(计算) 机器学习 常微分方程 实验数据 人工智能 领域(数学分析) 集合(抽象数据类型) 微分方程 物理 数学分析 统计 数学 量子力学 程序设计语言 操作系统
作者
Haakon Robinson,Erlend Torje Berg Lundby,Adil Rasheed,Jan Tommy Gravdahl
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106623-106623 被引量:2
标识
DOI:10.1016/j.engappai.2023.106623
摘要

Modeling complex physical processes such as the extraction of aluminum is mainly done using pure physics-based models derived from first principles. However, the accuracy of these models can often suffer due to a partial understanding of the process, uncertainty in the input parameters, and numerous modeling assumptions. More recently, with the ever-increasing availability of data, there has been an explosion of interest in applying modern machine learning methods because of their ability to learn complex mappings directly from data. Unfortunately, these models tend to be black boxes, require an enormous amount of data, and do not utilize existing domain knowledge. In this work, we develop a novel approach combining physics-based and data-driven modeling approaches while eliminating some weaknesses. We use a data-driven model to correct a misspecified physics-based model of the Hall–Héroult process in an aluminum electrolysis cell using a corrective source term added to the set of governing ordinary differential equations. Our approach ensures that the existing knowledge is utilized to the maximum extent possible while relying on the data-driven models only to model those aspects which the physics-based model does not represent well. We compare this approach with an end-to-end learning approach and an ablated physics-based model, showing that the proposed hybrid method is more accurate, consistent, and stable for long-term predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾泓跃完成签到 ,获得积分20
刚刚
刚刚
刚刚
1秒前
酷酷友容发布了新的文献求助10
1秒前
1秒前
zhaoxuemin完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
健壮的凝云完成签到,获得积分10
3秒前
Agoni发布了新的文献求助30
3秒前
李健应助www采纳,获得10
4秒前
nana发布了新的文献求助10
4秒前
4秒前
上官若男应助蔡翌文采纳,获得10
4秒前
胖胖发布了新的文献求助10
4秒前
英姑应助负责的方盒采纳,获得10
5秒前
5秒前
天天快乐应助韶邑采纳,获得10
5秒前
5秒前
6秒前
6秒前
wwx发布了新的文献求助10
7秒前
liyuhua发布了新的文献求助10
7秒前
陈陈发布了新的文献求助10
7秒前
Jet完成签到,获得积分10
7秒前
7秒前
背后语雪完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
哒哒哒发布了新的文献求助10
9秒前
大牛牛完成签到,获得积分10
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809