Predictive Value of Machine Learning Models in Postoperative Mortality of Older Adults Patients with Hip Fracture: A Systematic Review and Meta-analysis

机器学习 荟萃分析 医学 髋部骨折 人工智能 计算机科学 骨质疏松症 内科学
作者
Fan Liu,Chao Liu,Xiaoju Tang,Defei Gong,Jichong Zhu,Xiaoyun Zhang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:115: 105120-105120 被引量:2
标识
DOI:10.1016/j.archger.2023.105120
摘要

Some researchers have used machine learning to predict mortality in old patients with hip fracture, but its application value lacks an evidence-based basis. Hence, we conducted this meta-analysis to explore the predictive accuracy of machine learning for mortality in old patients with hip fracture. We systematically retrieved PubMed, Cochrane, Embase, and Web of Science for relevant studies published before July 15, 2022. The PROBAST assessment tool was used to assess the risk of bias in the included studies. A random-effects model was used for the meta-analysis of C-index, whereas a bivariate mixed-effects model was used for the meta-analysis of sensitivity and specificity. The meta-analysis was performed on R and Stata. Eighteen studies were included, involving 8 machine learning models and 398,422 old patients undergoing hip joint surgery, of whom 60,457 died. According to the meta-analysis, the pooled C-index for machine learning models was 0.762 (95% CI: 0.691 ∼ 0.833) in the training set and 0.838 (95% CI: 0.783 ∼ 0.892) in the validation set, which is better than the C-index of the main clinical scale (Nottingham Hip Fracture Score), that is, 0.702 (95% CI: 0.681 ∼ 0.723). Among different machine learning models, ANN and Bayesian belief network had the best predictive performance. Machine learning models are more accurate in predicting mortality in old patients after hip joint surgery than current mainstream clinical scoring systems. Subsequent research could focus on updating clinical scoring systems and improving their predictive performance by relying on machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guozizi发布了新的文献求助10
刚刚
zhuyimin913发布了新的文献求助10
1秒前
安静成威完成签到 ,获得积分10
1秒前
susu福福发布了新的文献求助10
1秒前
的发给我完成签到,获得积分20
2秒前
哈哈哈完成签到,获得积分10
4秒前
5秒前
灰灰完成签到,获得积分10
6秒前
司徒盼晴应助小亿采纳,获得10
6秒前
英姑应助LM879采纳,获得10
6秒前
烟花应助刘璇2采纳,获得10
7秒前
10秒前
wanci应助酷炫邑采纳,获得10
10秒前
12秒前
Lucas应助soso1010采纳,获得10
12秒前
Akim应助研友_nxGyxL采纳,获得10
12秒前
华鹰发布了新的文献求助10
14秒前
烟花应助zxy采纳,获得10
15秒前
脆脆应答完成签到,获得积分10
15秒前
李健应助eryday0采纳,获得10
15秒前
pass发布了新的文献求助10
16秒前
兔叽完成签到,获得积分10
16秒前
gaoxiaogao完成签到,获得积分10
17秒前
niuniuniu完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
21秒前
21秒前
小阙丢完成签到,获得积分10
22秒前
去花店了吗完成签到,获得积分10
22秒前
23秒前
dyyy发布了新的文献求助10
23秒前
niuniuniu发布了新的文献求助20
24秒前
24秒前
周肆完成签到,获得积分20
25秒前
馋馋完成签到,获得积分10
25秒前
刘璇2发布了新的文献求助10
25秒前
刘子寓发布了新的文献求助10
26秒前
zhanghuiwang应助meiting采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455119
求助须知:如何正确求助?哪些是违规求助? 3050396
关于积分的说明 9021195
捐赠科研通 2739055
什么是DOI,文献DOI怎么找? 1502407
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693269