A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism

加权 计算机科学 理论(学习稳定性) 风速 数学优化 启发式 数据预处理 灵敏度(控制系统) 风力发电 数据挖掘 算法 机器学习 人工智能 工程类 数学 电气工程 气象学 放射科 电子工程 医学 物理
作者
Zhirui Tian,Gai Mei
出处
期刊:Energy [Elsevier]
卷期号:281: 128225-128225 被引量:8
标识
DOI:10.1016/j.energy.2023.128225
摘要

As a kind of renewable energy, wind energy has great potential for development and has been paid attention to by governments all over the world. However, due to the high uncertainty of wind speed, how to accurately predict wind speed and make use of wind energy has been recognized as a difficult problem. In order to solve this problem, a new hybrid wind speed prediction framework is proposed, which is composed of two subsystems, data preprocessing system and high-accuracy prediction system. In the system 1, the feedback mechanism is creatively added to the singular spectrum analysis (SSA) to find out the optimal decomposition-recombination strategy through the accuracy feedback. In the system 2, the unconstrained weighting mechanism is realized through the combination of combined neural network and multi-objective optimization algorithm to maximize the prediction accuracy on the premise of ensuring the stability of prediction. Besides, an improved meta-heuristic optimization algorithm based on cross-perturbation strategy (CP-JAYA) and its multi-objective form (MO-CPJAYA) are applied on two systems respectively to further improve the prediction ability of the framework. In 5 groups of experiments, the accuracy, advancement, generalization and sensitivity of the model are tested and compared with 13 other models. The proposed prediction framework has the best performance in all four sets of data. In 3 groups of discussions, we verify the advanced nature of CP-JAYA and MO-CPJAYA respectively through 13 single-objective test functions (CEC) and 4 multi-objective test functions (ZDT), and the speed advantage of the framework by recording the CPU running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldj6670发布了新的文献求助10
1秒前
ldj6670发布了新的文献求助10
2秒前
ldj6670发布了新的文献求助10
2秒前
2秒前
ldj6670发布了新的文献求助10
2秒前
chenyuyuan完成签到,获得积分10
2秒前
HHHH完成签到,获得积分20
3秒前
3秒前
诗谙完成签到 ,获得积分10
3秒前
ldj6670发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
Hello应助lllll采纳,获得10
4秒前
4秒前
zjq发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
Hello应助小乔采纳,获得10
5秒前
桐桐应助伟伟采纳,获得10
5秒前
5秒前
ldj6670发布了新的文献求助10
5秒前
ldj6670发布了新的文献求助10
5秒前
ldj6670发布了新的文献求助10
5秒前
ldj6670发布了新的文献求助10
5秒前
ldj6670发布了新的文献求助10
6秒前
ldj6670发布了新的文献求助10
6秒前
ldj6670发布了新的文献求助10
6秒前
art6886发布了新的文献求助20
6秒前
6秒前
6秒前
ldj6670发布了新的文献求助10
6秒前
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306775
求助须知:如何正确求助?哪些是违规求助? 2940581
关于积分的说明 8497765
捐赠科研通 2614785
什么是DOI,文献DOI怎么找? 1428522
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263