Bi2MoO6 nanoflower-like microsphere photocatalyst modified by boron doped carbon quantum dots: Improving the photocatalytic degradation performance of BPA in all directions

光催化 纳米花 降级(电信) 材料科学 催化作用 复合数 化学工程 兴奋剂 碳纤维 碳量子点 量子点 纳米技术 光电子学 化学 复合材料 纳米结构 计算机科学 有机化学 电信 工程类
作者
Xinxin Chen,Changzhao Chen,Jiyuan Zang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:962: 171167-171167 被引量:38
标识
DOI:10.1016/j.jallcom.2023.171167
摘要

Bi-based semiconductor photocatalyst represented by Bi2MoO6 (BMO) has obvious advantages in the degradation of bisphenol A (BPA), but three prominent problems that restrict the improvement of photocatalytic performance, namely, insufficient solar absorption, less active sites and serious photogenerated carrier recombination, need to be solved urgently. For this reason, we specially designed a simple structure of B-doped carbon quantum dots (BCQDs) modified BMO nanoflower-like microsphere composite to improve the photocatalytic performance of the system from the above three dimensions. The optimized BCQDs/BMO sample completely degraded BPA within 120 min under simulated sunlight, corresponding to an apparent constant of 0.03453 min−1, while the control sample of CQDs/BMO without B doping only degraded about 84 % of BPA within 160 min, with an apparent coefficient of 0.01138 min−1. Even after filtering out UV components below 400 nm, the degradation performance of the optimal composite catalyst did not decrease. The improved catalytic performance comes from the excellent up-conversion luminescence performance and good electron storage capacity of CQDs on the one hand, and the introduction of B on the other hand can adjust the surface structure of CQDs to generate more active sites and functional interfaces to further promote the catalytic reaction. Free radical trapping and electron spin resonance (ESR) tests have shown that·OH and·O2- are the main active substances in the degradation of BPA. The current BCQDs/BMO catalysts, despite their simple structure, can simultaneously improve the catalytic performance from the three important aspects mentioned above, which will guide the design of others semiconductor based photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
墨白白完成签到,获得积分10
刚刚
hsm发布了新的文献求助10
刚刚
ss完成签到,获得积分10
刚刚
在水一方应助愉快的莹采纳,获得10
1秒前
1秒前
CodeCraft应助沉默是金采纳,获得10
1秒前
1秒前
贪玩的方盒完成签到,获得积分10
1秒前
wangchong完成签到,获得积分10
2秒前
2秒前
云止发布了新的文献求助10
3秒前
3秒前
njklc发布了新的文献求助10
3秒前
朴实曼凝发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
YDSG发布了新的文献求助10
4秒前
lanheqingniao发布了新的文献求助30
4秒前
AUM123完成签到,获得积分10
4秒前
merlinsong发布了新的文献求助10
5秒前
yyyy发布了新的文献求助10
5秒前
倾卿发布了新的文献求助20
5秒前
徐xu发布了新的文献求助10
5秒前
5秒前
华仔应助威武的半芹采纳,获得10
5秒前
chai发布了新的文献求助10
5秒前
xingxing完成签到,获得积分10
6秒前
NexusExplorer应助yb采纳,获得10
6秒前
紫陌江哥完成签到,获得积分20
6秒前
7秒前
诚心逍遥完成签到,获得积分10
7秒前
ddd完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助糟糕的铁锤采纳,获得20
8秒前
快乐帽子发布了新的文献求助10
8秒前
汉堡包应助美满的红酒采纳,获得10
8秒前
宗沛柔发布了新的文献求助10
8秒前
领导范儿应助雪梨采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785