Bi2MoO6 nanoflower-like microsphere photocatalyst modified by boron doped carbon quantum dots: Improving the photocatalytic degradation performance of BPA in all directions

光催化 纳米花 降级(电信) 材料科学 催化作用 复合数 化学工程 兴奋剂 碳纤维 碳量子点 量子点 纳米技术 光电子学 化学 复合材料 纳米结构 计算机科学 有机化学 电信 工程类
作者
Xinxin Chen,Changzhao Chen,Jiyuan Zang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:962: 171167-171167 被引量:20
标识
DOI:10.1016/j.jallcom.2023.171167
摘要

Bi-based semiconductor photocatalyst represented by Bi2MoO6 (BMO) has obvious advantages in the degradation of bisphenol A (BPA), but three prominent problems that restrict the improvement of photocatalytic performance, namely, insufficient solar absorption, less active sites and serious photogenerated carrier recombination, need to be solved urgently. For this reason, we specially designed a simple structure of B-doped carbon quantum dots (BCQDs) modified BMO nanoflower-like microsphere composite to improve the photocatalytic performance of the system from the above three dimensions. The optimized BCQDs/BMO sample completely degraded BPA within 120 min under simulated sunlight, corresponding to an apparent constant of 0.03453 min−1, while the control sample of CQDs/BMO without B doping only degraded about 84 % of BPA within 160 min, with an apparent coefficient of 0.01138 min−1. Even after filtering out UV components below 400 nm, the degradation performance of the optimal composite catalyst did not decrease. The improved catalytic performance comes from the excellent up-conversion luminescence performance and good electron storage capacity of CQDs on the one hand, and the introduction of B on the other hand can adjust the surface structure of CQDs to generate more active sites and functional interfaces to further promote the catalytic reaction. Free radical trapping and electron spin resonance (ESR) tests have shown that·OH and·O2- are the main active substances in the degradation of BPA. The current BCQDs/BMO catalysts, despite their simple structure, can simultaneously improve the catalytic performance from the three important aspects mentioned above, which will guide the design of others semiconductor based photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oo完成签到,获得积分10
1秒前
1秒前
1秒前
cwy发布了新的文献求助10
2秒前
5秒前
zhao完成签到 ,获得积分10
5秒前
FengGo发布了新的文献求助10
5秒前
Singularity应助科研通管家采纳,获得10
6秒前
良辰应助科研通管家采纳,获得10
6秒前
19应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得30
7秒前
7秒前
19应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
良辰应助科研通管家采纳,获得10
7秒前
良辰应助科研通管家采纳,获得10
7秒前
Ariel应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
花园里的蒜完成签到 ,获得积分0
9秒前
moffy发布了新的文献求助10
9秒前
科研通AI2S应助巴拉采纳,获得10
11秒前
12秒前
cwy完成签到,获得积分10
14秒前
香蕉秋寒应助淡定傲儿采纳,获得10
14秒前
8R60d8应助liffchao采纳,获得10
15秒前
15秒前
Xi完成签到,获得积分10
16秒前
dhh发布了新的文献求助10
16秒前
SciGPT应助时尚最时尚采纳,获得10
16秒前
19秒前
版权版权完成签到,获得积分10
19秒前
隐形曼青应助xun采纳,获得10
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529341
捐赠科研通 2621879
什么是DOI,文献DOI怎么找? 1434209
科研通“疑难数据库(出版商)”最低求助积分说明 665170
邀请新用户注册赠送积分活动 650738