劈形算符
有界函数
欧米茄
领域(数学分析)
组合数学
数学
边界(拓扑)
生产(经济)
Neumann边界条件
同种类的
数学分析
物理
量子力学
宏观经济学
经济
作者
Xiaobing Ye,Liangchen Wang
标识
DOI:10.58997/ejde.2022.58
摘要
This article concerns the chemotaxis-growth system with indirect signal production $$\displaylines{ u_t=\Delta u-\nabla\cdot(u\nabla v)+\mu u(1-u),\quad x\in \Omega,\; t>0,\cr 0=\Delta v-v+w,\quad x\in \Omega,\; t>0,\cr w_t=-\delta w+u,\quad x\in\Omega,\; t>0, }$$ on a smooth bounded domain \(\Omega\subset \mathbb{R}^n\) (\(n\geq1\) with homogeneous Neumann boundary condition, where the parameters \(\mu, \delta>0\). It is proved that if \(n\leq 2\) and \(\mu>0\), for all suitably regular initial data, this model possesses a unique global classical solution which is uniformly-in-time bounded. While in the case \(n\geq 3\), we show that if \(\mu\) is sufficiently large, this system possesses a global bounded solution. Furthermore, the large time behavior and rates of convergence have also been considered under some explicit conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI