检测前跟踪
杂乱
颗粒过滤器
计算机科学
分歧(语言学)
算法
雷达跟踪器
Kullback-Leibler散度
采样(信号处理)
蒙特卡罗方法
目标检测
重要性抽样
航程(航空)
雷达
人工智能
滤波器(信号处理)
模式识别(心理学)
计算机视觉
数学
工程类
统计
电信
语言学
哲学
航空航天工程
作者
Du Yong Kim,Luke Rosenberg,Branko Ristić,Robin Guan
标识
DOI:10.1109/radarconf2351548.2023.10149604
摘要
Track-before-detect (TBD) is a joint detection and tracking approach that takes advantage of a targets motion over time. For most TBD algorithms, the computationally load is very demanding and efficient implementations need to be developed. An algorithm recently proposed for maritime radar is the Bernoulli TBD particle filter with the number of particles determined heuristically. However, this is not a good approach in the maritime domain due to time and range-varying characteristics of sea clutter. In this paper, an efficient TBD algorithm is developed using Kullback Leibler divergence (KLD) sampling to achieve computational efficiency and adaptive selection of the number of particles. Monte Carlo simulations demonstrate that the adaptive selection of particle number results in excellent detection and tracking results.
科研通智能强力驱动
Strongly Powered by AbleSci AI