Air pollution measurement based on hybrid convolutional neural network with spatial-and-channel attention mechanism

计算机科学 机制(生物学) 卷积神经网络 频道(广播) 污染 人工智能 空气污染 人工神经网络 机器学习 环境科学 电信 认识论 哲学 生物 有机化学 化学 生态学
作者
Zhenyu Wang,Fucheng Wu,Yingdong Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:233: 120921-120921 被引量:8
标识
DOI:10.1016/j.eswa.2023.120921
摘要

Air quality is tightly correlated with human health, and long-term exposure to air pollution can pose a serious health risk to humans. In recent years, image-based air quality detection methods have been proposed and have achieved good accuracy in specific scenarios. However, most of the methods are still based on pure CNNs with fast inference speed but limited accuracy. Some also invoke a single channel or spatial attention mechanism, with improved accuracy but much slower inference speed. To have both advantages we propose the Spatial and Channel Calibration Network (SCCNet). The network combines spatial and channel attention to improve the detection efficiency and accuracy of the model by better extracting global information to focus computational resources on regions that are more important to the task. Our proposed channel averaging pooling (CAP) module significantly reduces the number of parameters in the model while extracting global information, improving the detection speed of the model. We also introduce a discrete cosine transform (DCT) method to transform images from the spatial domain to the frequency domain, which enhances the extraction of fine-grained features and improves the model’s classification ability for air quality detection tasks. Our experimental results show that SCCNet achieves an accuracy of 92.17% with about 30 million parameters in an air quality detection task, which is 1.65% and 1.71% more accurate than Swin Transformer (based on spatial attention) and SENet (based on channel attention) for a similar number of parameters. Our code and models will are publicly available at https://github.com/Fucheng-Wu/SCCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zho关闭了zho文献求助
刚刚
1秒前
1秒前
waaan完成签到 ,获得积分10
2秒前
sun发布了新的文献求助10
4秒前
Hayley发布了新的文献求助10
6秒前
6秒前
7秒前
壮观以山发布了新的文献求助10
8秒前
8秒前
zho关闭了zho文献求助
11秒前
难过千易发布了新的文献求助10
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
Hayley完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得30
14秒前
天天快乐应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
15秒前
yar应助科研通管家采纳,获得10
15秒前
悲凉的笑卉完成签到,获得积分20
16秒前
QSJ完成签到 ,获得积分10
16秒前
Tomjugj应助啊哭采纳,获得10
19秒前
小马甲应助难过千易采纳,获得10
20秒前
Rondab应助无误采纳,获得30
21秒前
21秒前
liguilong完成签到,获得积分20
21秒前
小谢完成签到 ,获得积分10
22秒前
1234567发布了新的文献求助10
23秒前
23秒前
yx_cheng给zzq的求助进行了留言
24秒前
liguilong发布了新的文献求助30
24秒前
津津发布了新的文献求助20
24秒前
26秒前
Tomjugj完成签到,获得积分10
27秒前
深情安青应助自觉的向薇采纳,获得10
27秒前
友好初夏发布了新的文献求助10
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998986
求助须知:如何正确求助?哪些是违规求助? 3538486
关于积分的说明 11274314
捐赠科研通 3277378
什么是DOI,文献DOI怎么找? 1807541
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810080