Guided deep embedded clustering regularization for multifeature medical signal classification

计算机科学 模式识别(心理学) 人工智能 聚类分析 卷积神经网络 正规化(语言学) 自编码 深度学习 编码器 特征学习 操作系统
作者
Yamil Vindas,Emmanuel Roux,Blaise Kévin Guépié,Marilys Almar,Philippe Delachartre
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109812-109812 被引量:6
标识
DOI:10.1016/j.patcog.2023.109812
摘要

Medical signal classification often focuses on one representation (raw signal or time frequency). In that context, recent works have shown the value of exploiting different representations simultaneously. We propose a regularized end-to-end trained model for classification in a medical context exploiting both the raw signal and a time-frequency representation (TFR). First, a 2D convolutional neural network (CNN) encoder and a 1D CNN-transformer encoder start by extracting embedded representations from the TFR and the raw signal, respectively. Then, the obtained embeddings are fused to form a common latent space that is used for classification. We propose to guide the training of each encoder by applying two iterated losses. Moreover, we propose to regularize the fused common latent space using deep embedded clustering. Extensive experiments on three medical datasets and ablation studies show the adaptability and good performance of our method for medical signal classification. Our method makes it possible to improve the classification performance from 4% to 12% MCC on a transcranial Doppler dataset, when compared with single-feature counterparts, while giving more stable models. The code is available at: https://github.com/gdec-submission/gdec/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助快乐马采纳,获得10
刚刚
88C真是太神奇啦完成签到,获得积分10
刚刚
潇洒的平松完成签到,获得积分10
1秒前
隐形曼青应助Songsong采纳,获得10
2秒前
3秒前
Orange应助DrYang采纳,获得10
3秒前
4秒前
000发布了新的文献求助10
4秒前
Clover完成签到 ,获得积分10
5秒前
小妮子发布了新的文献求助10
8秒前
还单身的惜文完成签到 ,获得积分10
8秒前
Xiaoxiao举报rh1006求助涉嫌违规
8秒前
Neo完成签到,获得积分10
9秒前
12秒前
二三发布了新的文献求助10
13秒前
Cindy完成签到,获得积分10
13秒前
稳重翠完成签到 ,获得积分10
14秒前
psycho完成签到,获得积分10
15秒前
666发布了新的文献求助10
16秒前
一直完成签到,获得积分20
18秒前
我是老大应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
茶送白粥应助科研通管家采纳,获得10
19秒前
茶送白粥应助科研通管家采纳,获得10
20秒前
茶送白粥应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
20秒前
ED应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
21秒前
Hz发布了新的文献求助10
22秒前
学术小天才完成签到,获得积分10
24秒前
24秒前
明天见发布了新的文献求助10
25秒前
科目三应助666采纳,获得10
26秒前
在水一方应助勤劳糜采纳,获得10
26秒前
糯米糍发布了新的文献求助20
26秒前
稳重翠发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343