DL4ALL: Multi-Task Cross-Dataset Transfer Learning for Acute Lymphoblastic Leukemia Detection

学习迁移 计算机科学 多任务学习 人工智能 过度拟合 机器学习 一般化 深度学习 任务(项目管理) 感应转移 淋巴细胞白血病 领域(数学分析) 人工神经网络 白血病 机器人学习 内科学 数学分析 数学 经济 移动机器人 管理 机器人 医学
作者
Angelo Genovese,Vincenzo Piuri,Konstantinos N. Plataniotis,Fabio Scotti
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 65222-65237 被引量:5
标识
DOI:10.1109/access.2023.3289219
摘要

Methods for the detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) are increasingly considering Deep Learning (DL) due to its high accuracy in several fields, including medical imaging. In most cases, such methods use transfer learning techniques to compensate for the limited availability of labeled data. However, current methods for ALL detection use traditional transfer learning, which requires the models to be fully trained on the source domain, then fine-tuned on the target domain, with the drawback of possibly overfitting the source domain and reducing the generalization capability on the target domain. To overcome this drawback and increase the classification accuracy that can be obtained using transfer learning, in this paper we propose our method named "Deep Learning for Acute Lymphoblastic Leukemia" (DL4ALL), a novel multi-task learning DL model for ALL detection, trained using a cross-dataset transfer learning approach. The method adapts an existing model into a multi-task classification problem, then trains it using transfer learning procedures that consider both source and target databases at the same time, interleaving batches from the two domains even when they are significantly different. The proposed DL4ALL represents the first work in the literature using a multi-task cross-dataset transfer learning procedure for ALL detection. Results on a publicly-available ALL database confirm the validity of our approach, which achieves a higher accuracy in detecting ALL with respect to existing methods, even when not using manual labels for the source domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助落寞的立果采纳,获得10
刚刚
虚幻龙猫发布了新的文献求助10
刚刚
刚刚
科研狗完成签到,获得积分10
1秒前
1秒前
1秒前
穆青发布了新的文献求助10
2秒前
2秒前
doctor fighting完成签到,获得积分10
2秒前
车可发布了新的文献求助10
3秒前
yoga发布了新的文献求助10
3秒前
BEI发布了新的文献求助30
3秒前
思源应助樱花雨采纳,获得10
5秒前
苏苏发布了新的文献求助20
5秒前
5秒前
小雨哥发布了新的文献求助60
6秒前
笨蛋美女完成签到 ,获得积分10
6秒前
chen完成签到,获得积分10
7秒前
能能完成签到 ,获得积分10
8秒前
咿咿呀呀发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
wanci应助帅气蓝采纳,获得10
9秒前
核桃应助可可采纳,获得10
10秒前
深情安青应助yoga采纳,获得10
10秒前
NikiJu完成签到,获得积分10
10秒前
乐乐应助Shrine采纳,获得10
11秒前
kww完成签到,获得积分20
11秒前
Eleven完成签到,获得积分10
12秒前
oasis完成签到,获得积分10
12秒前
彭于晏应助sakthi采纳,获得10
12秒前
12秒前
虚幻龙猫完成签到,获得积分10
12秒前
尤珠珠发布了新的文献求助10
14秒前
淡然冬灵发布了新的文献求助30
14秒前
fantastic完成签到,获得积分10
14秒前
飞太难发布了新的文献求助10
14秒前
qqwxp发布了新的文献求助10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798