前药
体内
化学
前列腺癌
药代动力学
药理学
还原酶
IC50型
前列腺
醛酮还原酶
酶
癌症
体外
癌症研究
生物化学
内科学
医学
生物
生物技术
作者
Maddeboina Krishnaiah,Sravan K. Jonnalagadda,Ahmed Morsy,Ling Duan,Yashpal S. Chhonker,Daryl J. Murry,T.M. Penning,Paul C. Trippier
标识
DOI:10.1021/acs.jmedchem.3c00732
摘要
Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of 5r, a potent AKR1C3 inhibitor (IC50 = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms. Due to the cognizance of the poor pharmacokinetics associated with free carboxylic acids, a methyl ester prodrug strategy was pursued. The prodrug 4r was converted to free acid 5r in vitro in mouse plasma and in vivo. The in vivo pharmacokinetic evaluation revealed an increase in systemic exposure and increased the maximum 5r concentration compared to direct administration of the free acid. The prodrug 4r demonstrated a dose-dependent effect to reduce the tumor volume of 22Rv1 prostate cancer xenografts without observed toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI