Urban dynamics through the lens of human mobility

中心性 经济地理学 地理 公制(单位) 索引(排版) 移动电话 个人流动性 计算机科学 地图学 区域科学 业务 电信 统计 数学 营销 万维网
作者
Yanyan Xu,Luis E. Olmos,David Mateo,Alberto Hernando,Xiaokang Yang,Marta C. González
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:3 (7): 611-620 被引量:15
标识
DOI:10.1038/s43588-023-00484-5
摘要

The urban spatial structure represents the distribution of public and private spaces in cities and how people move within them. Although it usually evolves slowly, it can change quickly during large-scale emergency events, as well as due to urban renewal in rapidly developing countries. Here we present an approach to delineate such urban dynamics in quasi-real time through a human mobility metric, the mobility centrality index ΔKS. As a case study, we tracked the urban dynamics of eleven Spanish cities during the COVID-19 pandemic. The results revealed that their structures became more monocentric during the lockdown in the first wave, but kept their regular spatial structures during the second wave. To provide a more comprehensive understanding of mobility from home, we also introduce a dimensionless metric, KSHBT, which measures the extent of home-based travel and provides statistical insights into the transmission of COVID-19. By utilizing individual mobility data, our metrics enable the detection of changes in the urban spatial structure. The study presents a mobility centrality index to delineate urban dynamics in quasi-real time with mobile-phone data. The results indicate that urban structures were becoming more monocentric during the COVID-19 lockdown periods in major cities in Spain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
牧歌完成签到,获得积分0
2秒前
Ruby发布了新的文献求助20
5秒前
5秒前
Alinf完成签到,获得积分10
6秒前
6秒前
传奇3应助leecarp采纳,获得20
8秒前
8秒前
Qy发布了新的文献求助10
8秒前
9秒前
Umna完成签到,获得积分10
9秒前
贝贝不背发布了新的文献求助10
10秒前
1111完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助VnV采纳,获得10
10秒前
无私的绿蕊完成签到,获得积分10
11秒前
斯文败类应助berlin采纳,获得10
12秒前
yangbing123完成签到,获得积分10
12秒前
FashionBoy应助平常的白猫采纳,获得10
13秒前
Endlessway应助maizhenpeng采纳,获得20
14秒前
李健的粉丝团团长应助CC采纳,获得10
14秒前
14秒前
希望天下0贩的0应助1111采纳,获得10
15秒前
15秒前
Mark发布了新的文献求助30
15秒前
AA完成签到,获得积分10
16秒前
18秒前
18秒前
留胡子的怜容完成签到,获得积分10
18秒前
Mr_Chen发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
21秒前
22秒前
丘比特应助歪比巴啵采纳,获得10
22秒前
HY发布了新的文献求助10
22秒前
22秒前
maizhenpeng给maizhenpeng的求助进行了留言
23秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217938
求助须知:如何正确求助?哪些是违规求助? 2867189
关于积分的说明 8154985
捐赠科研通 2533990
什么是DOI,文献DOI怎么找? 1366725
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617836