Low saliency crack detection based on improved multimodal object detection network: an example of wind turbine blade inner surface

人工智能 计算机科学 目标检测 计算机视觉 卷积神经网络 干扰(通信) 特征(语言学) 深度学习 模式识别(心理学) 频道(广播) 计算机网络 语言学 哲学
作者
Yinfeng Gao,Shijie Dai,Wenbin Ji,Ruiqin Wang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (03) 被引量:3
标识
DOI:10.1117/1.jei.32.3.033033
摘要

Accurate identification of cracks is of great significance for maintaining the health of the equipment. However, the low saliency of cracks in some composite or metal surfaces affects the detection accuracy of object detection algorithms. For example, small cracks on the inner surface of wind turbine blade (WTB) may be similar in color to the substrate or face complex background textures. Taking WTB cracks as low saliency crack samples, we propose a multimodal object detection convolutional neural network that fuses infrared images with visible images to detect cracks more accurately. The proposed network contains the CenterNet network with an existing fast and efficient mid-level fusion structure. First, we optimized the fusion structure to make it more suitable for extracting crack features. To address the problem that severe background interference in multimodal images affects the detection performance, we add channel attention to the fusion structure and train the improved network using a stepwise training method to enhance the framework's ability to filter background interference information. Finally, the effectiveness of the improvements was verified by ablation experiments and feature map analysis, and the phenomena of wrong detection, missed detection, and repeated detection were reduced. The evaluation results show that the proposed multimodal object detection network is able to detect the low saliency WTB cracks more effectively, and the improvement of the network also results in a 6.22% increase in average precision. In addition, this method can be extended to other materials or scenes to identify very inconspicuous objects, replacing manual inspection in more challenging defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助Oasis采纳,获得10
1秒前
和谐的鹤轩完成签到 ,获得积分10
1秒前
慕青应助大方的凝旋采纳,获得10
1秒前
2秒前
2秒前
杨航发布了新的文献求助10
2秒前
小丹小丹完成签到 ,获得积分10
3秒前
3秒前
直率夏烟发布了新的文献求助220
3秒前
healer发布了新的文献求助10
4秒前
会飞的猪发布了新的文献求助10
4秒前
从容海完成签到 ,获得积分10
4秒前
6秒前
秋殤完成签到 ,获得积分10
7秒前
renshi647发布了新的文献求助10
7秒前
科研通AI2S应助rcf采纳,获得10
8秒前
8秒前
Baron发布了新的文献求助10
8秒前
8秒前
丘比特应助丙烯酸树脂采纳,获得10
9秒前
风灵无畏完成签到,获得积分10
9秒前
9秒前
南浔完成签到,获得积分10
10秒前
11秒前
1111完成签到,获得积分10
12秒前
ddx关闭了ddx文献求助
12秒前
风灵无畏发布了新的文献求助10
13秒前
李卓霖发布了新的文献求助10
13秒前
15秒前
包容夕阳完成签到,获得积分10
16秒前
标致的芷文关注了科研通微信公众号
17秒前
17秒前
17秒前
852应助Anran采纳,获得10
18秒前
18秒前
Baron完成签到,获得积分10
20秒前
搜集达人应助寂寞的丹烟采纳,获得10
20秒前
思源应助miss采纳,获得10
21秒前
庄落发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424645
求助须知:如何正确求助?哪些是违规求助? 4538996
关于积分的说明 14164586
捐赠科研通 4455962
什么是DOI,文献DOI怎么找? 2444024
邀请新用户注册赠送积分活动 1435084
关于科研通互助平台的介绍 1412452