Low saliency crack detection based on improved multimodal object detection network: an example of wind turbine blade inner surface

人工智能 计算机科学 目标检测 计算机视觉 卷积神经网络 干扰(通信) 特征(语言学) 深度学习 模式识别(心理学) 频道(广播) 计算机网络 语言学 哲学
作者
Yinfeng Gao,Shijie Dai,Wenbin Ji,Ruiqin Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (03) 被引量:3
标识
DOI:10.1117/1.jei.32.3.033033
摘要

Accurate identification of cracks is of great significance for maintaining the health of the equipment. However, the low saliency of cracks in some composite or metal surfaces affects the detection accuracy of object detection algorithms. For example, small cracks on the inner surface of wind turbine blade (WTB) may be similar in color to the substrate or face complex background textures. Taking WTB cracks as low saliency crack samples, we propose a multimodal object detection convolutional neural network that fuses infrared images with visible images to detect cracks more accurately. The proposed network contains the CenterNet network with an existing fast and efficient mid-level fusion structure. First, we optimized the fusion structure to make it more suitable for extracting crack features. To address the problem that severe background interference in multimodal images affects the detection performance, we add channel attention to the fusion structure and train the improved network using a stepwise training method to enhance the framework's ability to filter background interference information. Finally, the effectiveness of the improvements was verified by ablation experiments and feature map analysis, and the phenomena of wrong detection, missed detection, and repeated detection were reduced. The evaluation results show that the proposed multimodal object detection network is able to detect the low saliency WTB cracks more effectively, and the improvement of the network also results in a 6.22% increase in average precision. In addition, this method can be extended to other materials or scenes to identify very inconspicuous objects, replacing manual inspection in more challenging defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助brian0326采纳,获得10
2秒前
幽默的季节完成签到,获得积分10
2秒前
jam完成签到,获得积分10
2秒前
2秒前
孙总完成签到,获得积分10
4秒前
4秒前
xq发布了新的文献求助10
5秒前
6秒前
顾矜应助幽默的季节采纳,获得10
8秒前
达尔文发布了新的文献求助10
9秒前
10秒前
茫123456完成签到,获得积分10
11秒前
hxb发布了新的文献求助10
11秒前
11秒前
12秒前
HUA完成签到,获得积分10
12秒前
13秒前
Annie应助于鹏采纳,获得10
14秒前
14秒前
14秒前
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
风清扬发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
star应助科研通管家采纳,获得150
15秒前
Hello应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
ccm应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352