Low saliency crack detection based on improved multimodal object detection network: an example of wind turbine blade inner surface

人工智能 计算机科学 目标检测 计算机视觉 卷积神经网络 干扰(通信) 特征(语言学) 深度学习 模式识别(心理学) 频道(广播) 计算机网络 语言学 哲学
作者
Yinfeng Gao,Shijie Dai,Wenbin Ji,Ruiqin Wang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (03) 被引量:3
标识
DOI:10.1117/1.jei.32.3.033033
摘要

Accurate identification of cracks is of great significance for maintaining the health of the equipment. However, the low saliency of cracks in some composite or metal surfaces affects the detection accuracy of object detection algorithms. For example, small cracks on the inner surface of wind turbine blade (WTB) may be similar in color to the substrate or face complex background textures. Taking WTB cracks as low saliency crack samples, we propose a multimodal object detection convolutional neural network that fuses infrared images with visible images to detect cracks more accurately. The proposed network contains the CenterNet network with an existing fast and efficient mid-level fusion structure. First, we optimized the fusion structure to make it more suitable for extracting crack features. To address the problem that severe background interference in multimodal images affects the detection performance, we add channel attention to the fusion structure and train the improved network using a stepwise training method to enhance the framework's ability to filter background interference information. Finally, the effectiveness of the improvements was verified by ablation experiments and feature map analysis, and the phenomena of wrong detection, missed detection, and repeated detection were reduced. The evaluation results show that the proposed multimodal object detection network is able to detect the low saliency WTB cracks more effectively, and the improvement of the network also results in a 6.22% increase in average precision. In addition, this method can be extended to other materials or scenes to identify very inconspicuous objects, replacing manual inspection in more challenging defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
createup发布了新的文献求助10
刚刚
鲜艳的手链完成签到,获得积分10
1秒前
1秒前
董先生发布了新的文献求助20
1秒前
2秒前
3秒前
王武聪发布了新的文献求助10
3秒前
3秒前
3秒前
wangwang完成签到,获得积分0
4秒前
ghytrfd完成签到,获得积分10
4秒前
林白完成签到,获得积分10
4秒前
5秒前
悦耳人生发布了新的文献求助10
5秒前
七七完成签到,获得积分10
5秒前
陈皮有远志完成签到,获得积分10
5秒前
6秒前
不良人完成签到,获得积分20
6秒前
6秒前
noodles完成签到,获得积分10
6秒前
田様应助傲娇以寒采纳,获得10
7秒前
唐鹿发布了新的文献求助10
8秒前
8秒前
我服有点黑应助eye采纳,获得20
8秒前
8秒前
等待八宝粥完成签到,获得积分10
9秒前
相爱就永远在一起完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
DOZ完成签到,获得积分10
11秒前
赘婿应助杨wx采纳,获得10
11秒前
sssucker发布了新的文献求助20
12秒前
情怀应助小明采纳,获得10
12秒前
magiczhu发布了新的文献求助10
13秒前
zdl应助wangwang采纳,获得30
13秒前
14秒前
传奇3应助王武聪采纳,获得10
14秒前
好旺发布了新的文献求助30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505