Low saliency crack detection based on improved multimodal object detection network: an example of wind turbine blade inner surface

人工智能 计算机科学 目标检测 计算机视觉 卷积神经网络 干扰(通信) 特征(语言学) 深度学习 模式识别(心理学) 频道(广播) 计算机网络 语言学 哲学
作者
Yinfeng Gao,Shijie Dai,Wenbin Ji,Ruiqin Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (03) 被引量:3
标识
DOI:10.1117/1.jei.32.3.033033
摘要

Accurate identification of cracks is of great significance for maintaining the health of the equipment. However, the low saliency of cracks in some composite or metal surfaces affects the detection accuracy of object detection algorithms. For example, small cracks on the inner surface of wind turbine blade (WTB) may be similar in color to the substrate or face complex background textures. Taking WTB cracks as low saliency crack samples, we propose a multimodal object detection convolutional neural network that fuses infrared images with visible images to detect cracks more accurately. The proposed network contains the CenterNet network with an existing fast and efficient mid-level fusion structure. First, we optimized the fusion structure to make it more suitable for extracting crack features. To address the problem that severe background interference in multimodal images affects the detection performance, we add channel attention to the fusion structure and train the improved network using a stepwise training method to enhance the framework's ability to filter background interference information. Finally, the effectiveness of the improvements was verified by ablation experiments and feature map analysis, and the phenomena of wrong detection, missed detection, and repeated detection were reduced. The evaluation results show that the proposed multimodal object detection network is able to detect the low saliency WTB cracks more effectively, and the improvement of the network also results in a 6.22% increase in average precision. In addition, this method can be extended to other materials or scenes to identify very inconspicuous objects, replacing manual inspection in more challenging defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxx完成签到,获得积分20
1秒前
超级煎饼完成签到 ,获得积分10
2秒前
桐桐应助Z鸡汤采纳,获得20
2秒前
3秒前
tony96完成签到,获得积分20
4秒前
4秒前
ASIS发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
xuxingjie发布了新的文献求助10
6秒前
大个应助Elaine采纳,获得10
7秒前
mango发布了新的文献求助10
8秒前
研友_nEWaD8完成签到,获得积分10
9秒前
zzz完成签到,获得积分10
9秒前
sweets完成签到,获得积分10
11秒前
LL发布了新的文献求助30
11秒前
11秒前
13秒前
www完成签到,获得积分10
14秒前
15秒前
15秒前
222发布了新的文献求助10
15秒前
黄量杰成发布了新的文献求助10
16秒前
17秒前
17秒前
sansan完成签到 ,获得积分10
18秒前
manru发布了新的文献求助10
18秒前
18秒前
19秒前
ASIS完成签到,获得积分10
19秒前
刘祥发布了新的文献求助10
19秒前
虚拟的柠檬完成签到,获得积分10
20秒前
21秒前
run发布了新的文献求助50
22秒前
赵乂发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
lyt发布了新的文献求助10
23秒前
yunyueqixun完成签到 ,获得积分10
23秒前
倪侃发布了新的文献求助10
23秒前
时567完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983