Low saliency crack detection based on improved multimodal object detection network: an example of wind turbine blade inner surface

人工智能 计算机科学 目标检测 计算机视觉 卷积神经网络 干扰(通信) 特征(语言学) 深度学习 模式识别(心理学) 频道(广播) 计算机网络 语言学 哲学
作者
Yinfeng Gao,Shijie Dai,Wenbin Ji,Ruiqin Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (03) 被引量:3
标识
DOI:10.1117/1.jei.32.3.033033
摘要

Accurate identification of cracks is of great significance for maintaining the health of the equipment. However, the low saliency of cracks in some composite or metal surfaces affects the detection accuracy of object detection algorithms. For example, small cracks on the inner surface of wind turbine blade (WTB) may be similar in color to the substrate or face complex background textures. Taking WTB cracks as low saliency crack samples, we propose a multimodal object detection convolutional neural network that fuses infrared images with visible images to detect cracks more accurately. The proposed network contains the CenterNet network with an existing fast and efficient mid-level fusion structure. First, we optimized the fusion structure to make it more suitable for extracting crack features. To address the problem that severe background interference in multimodal images affects the detection performance, we add channel attention to the fusion structure and train the improved network using a stepwise training method to enhance the framework's ability to filter background interference information. Finally, the effectiveness of the improvements was verified by ablation experiments and feature map analysis, and the phenomena of wrong detection, missed detection, and repeated detection were reduced. The evaluation results show that the proposed multimodal object detection network is able to detect the low saliency WTB cracks more effectively, and the improvement of the network also results in a 6.22% increase in average precision. In addition, this method can be extended to other materials or scenes to identify very inconspicuous objects, replacing manual inspection in more challenging defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助高兴的薯片采纳,获得10
1秒前
Johnpick发布了新的文献求助10
1秒前
Andy发布了新的文献求助10
1秒前
1秒前
负责御姐完成签到,获得积分10
1秒前
852应助飞云采纳,获得10
2秒前
windypk完成签到,获得积分10
3秒前
3秒前
3秒前
打打应助tfq200采纳,获得50
3秒前
3秒前
希望天下0贩的0应助Simmy采纳,获得10
3秒前
高高的坤发布了新的文献求助10
4秒前
4秒前
科研通AI5应助2016采纳,获得30
4秒前
奋斗的冬云完成签到,获得积分10
5秒前
5秒前
从容谷菱发布了新的文献求助10
5秒前
Hello应助zyy采纳,获得10
5秒前
科研通AI5应助小许采纳,获得10
5秒前
6秒前
学习发布了新的文献求助10
6秒前
zhengyuetong发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
em0应助小飞侠来咯采纳,获得10
8秒前
金熙美发布了新的文献求助30
8秒前
22222222发布了新的文献求助10
8秒前
9秒前
chenhuiwan应助学术垃圾采纳,获得10
9秒前
晨曦暮雪完成签到,获得积分10
9秒前
王焕然完成签到 ,获得积分20
9秒前
9秒前
ss发布了新的文献求助10
9秒前
10秒前
绯月完成签到,获得积分20
10秒前
和谐念寒发布了新的文献求助10
10秒前
10秒前
打工人完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424