Low saliency crack detection based on improved multimodal object detection network: an example of wind turbine blade inner surface

人工智能 计算机科学 目标检测 计算机视觉 卷积神经网络 干扰(通信) 特征(语言学) 深度学习 模式识别(心理学) 频道(广播) 计算机网络 语言学 哲学
作者
Yinfeng Gao,Shijie Dai,Wenbin Ji,Ruiqin Wang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (03) 被引量:1
标识
DOI:10.1117/1.jei.32.3.033033
摘要

Accurate identification of cracks is of great significance for maintaining the health of the equipment. However, the low saliency of cracks in some composite or metal surfaces affects the detection accuracy of object detection algorithms. For example, small cracks on the inner surface of wind turbine blade (WTB) may be similar in color to the substrate or face complex background textures. Taking WTB cracks as low saliency crack samples, we propose a multimodal object detection convolutional neural network that fuses infrared images with visible images to detect cracks more accurately. The proposed network contains the CenterNet network with an existing fast and efficient mid-level fusion structure. First, we optimized the fusion structure to make it more suitable for extracting crack features. To address the problem that severe background interference in multimodal images affects the detection performance, we add channel attention to the fusion structure and train the improved network using a stepwise training method to enhance the framework's ability to filter background interference information. Finally, the effectiveness of the improvements was verified by ablation experiments and feature map analysis, and the phenomena of wrong detection, missed detection, and repeated detection were reduced. The evaluation results show that the proposed multimodal object detection network is able to detect the low saliency WTB cracks more effectively, and the improvement of the network also results in a 6.22% increase in average precision. In addition, this method can be extended to other materials or scenes to identify very inconspicuous objects, replacing manual inspection in more challenging defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sepsp完成签到,获得积分10
刚刚
Kyrene完成签到,获得积分10
刚刚
圣人海发布了新的文献求助10
2秒前
庾储完成签到,获得积分10
2秒前
2秒前
无敌吴硕完成签到,获得积分10
2秒前
hank发布了新的文献求助10
3秒前
张张发布了新的文献求助10
3秒前
4秒前
4秒前
孙梁子完成签到 ,获得积分10
4秒前
5秒前
hhhgfzgsj完成签到 ,获得积分10
5秒前
易安完成签到,获得积分10
5秒前
ccy完成签到,获得积分10
5秒前
打打应助研友_8Wq6Mn采纳,获得10
6秒前
6秒前
6秒前
目土土完成签到 ,获得积分10
6秒前
一二完成签到,获得积分20
7秒前
7秒前
欧阳发布了新的文献求助10
7秒前
金金发布了新的文献求助10
7秒前
张乐完成签到,获得积分10
8秒前
真实的俊驰完成签到,获得积分10
8秒前
斯文败类应助雪白起眸采纳,获得10
8秒前
9秒前
lwk发布了新的文献求助10
9秒前
Alexis发布了新的文献求助10
9秒前
9秒前
怡然沅完成签到,获得积分10
10秒前
糖不太甜完成签到,获得积分10
10秒前
10秒前
wsqg123发布了新的文献求助10
11秒前
yongtao发布了新的文献求助10
11秒前
11秒前
Galaxy8完成签到,获得积分10
12秒前
12秒前
jiafang完成签到,获得积分10
12秒前
化鼠完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012