RaNeRF: Neural 3-D Reconstruction of Space Targets From ISAR Image Sequences

逆合成孔径雷达 人工智能 计算机科学 计算机视觉 合成孔径雷达 雷达成像 迭代重建 模式识别(心理学) 雷达 电信
作者
Afei Liu,Shuanghui Zhang,Chi Zhang,Shuaifeng Zhi,Xiang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3298067
摘要

Compared to 2D inverse synthetic aperture radar (ISAR) images of a space target, its 3D model can provide adequate details and accurate measurement parameters. However, it is challenging to tackle the problem of feature extraction and correlation during 3D reconstruction of space targets purely based on radar image sequences, due to their lack of clear evidence in imaging similarity compared to optical images. To address this problem, this paper proposes radar neural radiance fields (i.e. RaNeRF), which is a novel 3D reconstruction method using only observed ISAR image sequences. Firstly, the 3D structure of a target is represented as a continuous 6D function of space positions and viewing directions using a fully-connected deep network. Secondly, the relationship between the 3D structure and 2D ISAR images of the target is constructed to enable differential rendering of ISAR images. Our overall pipeline can thus be trained using the discrepancy between the modulus of rendered and observed ISAR images in a purely self-supervised manner without 3D supervision. Finally, the 3D mesh model of the target can be retrieved from the learned density field via marching cube. As a result, the proposed RaNeRF can directly reconstruct the 3D structure of targets without explicit feature extraction and correlation of ISAR image sequences. Both quantitative and qualitative results verify the effectiveness of the proposed method. Compared to conventional baseline methods using point clouds, our reconstructed structure is more complete and accurate. In addition, the optimized model can synthesize ISAR images at novel observation direction, which can be used for downstream tasks including data augmentation and target recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
daggeraxe完成签到 ,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
恋如雪止应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
谦让凌晴应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
小蘑菇应助zhao采纳,获得10
3秒前
3秒前
3秒前
关关过应助科研通管家采纳,获得30
3秒前
wanci应助科研通管家采纳,获得10
3秒前
CipherSage应助ljxx采纳,获得10
5秒前
Jasper应助骤雨红尘采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406