RaNeRF: Neural 3-D Reconstruction of Space Targets From ISAR Image Sequences

逆合成孔径雷达 人工智能 计算机科学 计算机视觉 合成孔径雷达 雷达成像 迭代重建 模式识别(心理学) 雷达 电信
作者
Afei Liu,Shuanghui Zhang,Chi Zhang,Shuaifeng Zhi,Xiang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3298067
摘要

Compared to 2D inverse synthetic aperture radar (ISAR) images of a space target, its 3D model can provide adequate details and accurate measurement parameters. However, it is challenging to tackle the problem of feature extraction and correlation during 3D reconstruction of space targets purely based on radar image sequences, due to their lack of clear evidence in imaging similarity compared to optical images. To address this problem, this paper proposes radar neural radiance fields (i.e. RaNeRF), which is a novel 3D reconstruction method using only observed ISAR image sequences. Firstly, the 3D structure of a target is represented as a continuous 6D function of space positions and viewing directions using a fully-connected deep network. Secondly, the relationship between the 3D structure and 2D ISAR images of the target is constructed to enable differential rendering of ISAR images. Our overall pipeline can thus be trained using the discrepancy between the modulus of rendered and observed ISAR images in a purely self-supervised manner without 3D supervision. Finally, the 3D mesh model of the target can be retrieved from the learned density field via marching cube. As a result, the proposed RaNeRF can directly reconstruct the 3D structure of targets without explicit feature extraction and correlation of ISAR image sequences. Both quantitative and qualitative results verify the effectiveness of the proposed method. Compared to conventional baseline methods using point clouds, our reconstructed structure is more complete and accurate. In addition, the optimized model can synthesize ISAR images at novel observation direction, which can be used for downstream tasks including data augmentation and target recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
桐桐应助季世坤采纳,获得10
1秒前
浮游应助yy采纳,获得10
1秒前
2秒前
LL关闭了LL文献求助
2秒前
科研通AI5应助冷静无心采纳,获得10
3秒前
xiaojinyu完成签到 ,获得积分10
3秒前
3秒前
4秒前
jinyu完成签到,获得积分10
4秒前
豆子发布了新的文献求助10
5秒前
5秒前
i7发布了新的文献求助10
5秒前
frank发布了新的文献求助10
5秒前
开放念云完成签到,获得积分20
6秒前
6秒前
复成发布了新的文献求助10
6秒前
6秒前
wangchaofk完成签到,获得积分10
6秒前
zhangzy发布了新的文献求助10
6秒前
Green发布了新的文献求助10
7秒前
Gamen完成签到,获得积分20
7秒前
guli完成签到,获得积分10
7秒前
7秒前
vothuong完成签到,获得积分10
7秒前
My发布了新的文献求助10
8秒前
定西完成签到,获得积分10
8秒前
8秒前
xuyang完成签到,获得积分10
8秒前
8秒前
Rufina0720发布了新的文献求助10
8秒前
ava完成签到,获得积分10
9秒前
朴素的向雁完成签到,获得积分10
9秒前
9秒前
大模型应助鱼鱼子999采纳,获得10
10秒前
lbc发布了新的文献求助10
10秒前
开放念云发布了新的文献求助10
10秒前
稳重诗珊发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262