RaNeRF: Neural 3-D Reconstruction of Space Targets From ISAR Image Sequences

逆合成孔径雷达 人工智能 计算机科学 计算机视觉 合成孔径雷达 雷达成像 迭代重建 模式识别(心理学) 雷达 电信
作者
Afei Liu,Shuanghui Zhang,Chi Zhang,Shuaifeng Zhi,Xiang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3298067
摘要

Compared to 2D inverse synthetic aperture radar (ISAR) images of a space target, its 3D model can provide adequate details and accurate measurement parameters. However, it is challenging to tackle the problem of feature extraction and correlation during 3D reconstruction of space targets purely based on radar image sequences, due to their lack of clear evidence in imaging similarity compared to optical images. To address this problem, this paper proposes radar neural radiance fields (i.e. RaNeRF), which is a novel 3D reconstruction method using only observed ISAR image sequences. Firstly, the 3D structure of a target is represented as a continuous 6D function of space positions and viewing directions using a fully-connected deep network. Secondly, the relationship between the 3D structure and 2D ISAR images of the target is constructed to enable differential rendering of ISAR images. Our overall pipeline can thus be trained using the discrepancy between the modulus of rendered and observed ISAR images in a purely self-supervised manner without 3D supervision. Finally, the 3D mesh model of the target can be retrieved from the learned density field via marching cube. As a result, the proposed RaNeRF can directly reconstruct the 3D structure of targets without explicit feature extraction and correlation of ISAR image sequences. Both quantitative and qualitative results verify the effectiveness of the proposed method. Compared to conventional baseline methods using point clouds, our reconstructed structure is more complete and accurate. In addition, the optimized model can synthesize ISAR images at novel observation direction, which can be used for downstream tasks including data augmentation and target recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
22发布了新的文献求助10
刚刚
aacc956发布了新的文献求助10
刚刚
刚刚
谨慎涵柏完成签到,获得积分10
1秒前
快乐的如风完成签到,获得积分10
2秒前
3秒前
吃猫的鱼完成签到,获得积分10
3秒前
脑洞疼应助润润轩轩采纳,获得10
4秒前
刘文静完成签到,获得积分10
5秒前
Southluuu发布了新的文献求助10
5秒前
chenjyuu发布了新的文献求助10
5秒前
5秒前
粗暴的仙人掌完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
logic发布了新的文献求助10
6秒前
习习应助生动的雨竹采纳,获得10
6秒前
bo完成签到 ,获得积分10
6秒前
迟大猫应助啵乐乐采纳,获得10
7秒前
安雯完成签到 ,获得积分10
7秒前
HuLL完成签到,获得积分10
7秒前
Yolo完成签到 ,获得积分10
7秒前
难过的慕青完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
10秒前
无花果应助sunzhiyu233采纳,获得10
10秒前
韭黄完成签到,获得积分20
10秒前
11秒前
诚c发布了新的文献求助10
11秒前
自然秋柳完成签到 ,获得积分10
11秒前
我是老大应助经法采纳,获得10
11秒前
默默的皮牙子应助经法采纳,获得10
11秒前
orixero应助经法采纳,获得10
11秒前
小马甲应助经法采纳,获得10
11秒前
柚子成精应助经法采纳,获得10
12秒前
小蘑菇应助经法采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759