亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RaNeRF: Neural 3-D Reconstruction of Space Targets From ISAR Image Sequences

逆合成孔径雷达 人工智能 计算机科学 计算机视觉 合成孔径雷达 雷达成像 迭代重建 模式识别(心理学) 雷达 电信
作者
Afei Liu,Shuanghui Zhang,Chi Zhang,Shuaifeng Zhi,Xiang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3298067
摘要

Compared to 2D inverse synthetic aperture radar (ISAR) images of a space target, its 3D model can provide adequate details and accurate measurement parameters. However, it is challenging to tackle the problem of feature extraction and correlation during 3D reconstruction of space targets purely based on radar image sequences, due to their lack of clear evidence in imaging similarity compared to optical images. To address this problem, this paper proposes radar neural radiance fields (i.e. RaNeRF), which is a novel 3D reconstruction method using only observed ISAR image sequences. Firstly, the 3D structure of a target is represented as a continuous 6D function of space positions and viewing directions using a fully-connected deep network. Secondly, the relationship between the 3D structure and 2D ISAR images of the target is constructed to enable differential rendering of ISAR images. Our overall pipeline can thus be trained using the discrepancy between the modulus of rendered and observed ISAR images in a purely self-supervised manner without 3D supervision. Finally, the 3D mesh model of the target can be retrieved from the learned density field via marching cube. As a result, the proposed RaNeRF can directly reconstruct the 3D structure of targets without explicit feature extraction and correlation of ISAR image sequences. Both quantitative and qualitative results verify the effectiveness of the proposed method. Compared to conventional baseline methods using point clouds, our reconstructed structure is more complete and accurate. In addition, the optimized model can synthesize ISAR images at novel observation direction, which can be used for downstream tasks including data augmentation and target recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzgpku完成签到,获得积分0
2秒前
3秒前
3秒前
so发布了新的文献求助10
4秒前
科研通AI6应助上官采纳,获得10
9秒前
科研通AI6应助上官采纳,获得10
10秒前
11秒前
11秒前
11秒前
WFWcool完成签到,获得积分20
12秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
14秒前
可靠幼旋发布了新的文献求助10
16秒前
20秒前
ccc发布了新的文献求助10
22秒前
坦率的尔冬完成签到,获得积分10
24秒前
常常完成签到 ,获得积分10
25秒前
zone发布了新的文献求助10
25秒前
27秒前
27秒前
默默善愁完成签到,获得积分10
27秒前
深情安青应助Cell采纳,获得10
28秒前
29秒前
小饶发布了新的文献求助10
31秒前
默默善愁发布了新的文献求助10
31秒前
11完成签到,获得积分20
32秒前
33秒前
脑洞疼应助坦率的尔冬采纳,获得10
36秒前
37秒前
BowieHuang应助默默善愁采纳,获得10
39秒前
共享精神应助默默善愁采纳,获得10
39秒前
42秒前
42秒前
43秒前
小马甲应助heartmedicine采纳,获得10
46秒前
ljm发布了新的文献求助10
49秒前
Cell发布了新的文献求助10
49秒前
caspar完成签到,获得积分10
53秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590362
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795095
捐赠科研通 4631363
什么是DOI,文献DOI怎么找? 2532691
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617