亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RaNeRF: Neural 3-D Reconstruction of Space Targets From ISAR Image Sequences

逆合成孔径雷达 人工智能 计算机科学 计算机视觉 合成孔径雷达 雷达成像 迭代重建 模式识别(心理学) 雷达 电信
作者
Afei Liu,Shuanghui Zhang,Chi Zhang,Shuaifeng Zhi,Xiang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3298067
摘要

Compared to 2D inverse synthetic aperture radar (ISAR) images of a space target, its 3D model can provide adequate details and accurate measurement parameters. However, it is challenging to tackle the problem of feature extraction and correlation during 3D reconstruction of space targets purely based on radar image sequences, due to their lack of clear evidence in imaging similarity compared to optical images. To address this problem, this paper proposes radar neural radiance fields (i.e. RaNeRF), which is a novel 3D reconstruction method using only observed ISAR image sequences. Firstly, the 3D structure of a target is represented as a continuous 6D function of space positions and viewing directions using a fully-connected deep network. Secondly, the relationship between the 3D structure and 2D ISAR images of the target is constructed to enable differential rendering of ISAR images. Our overall pipeline can thus be trained using the discrepancy between the modulus of rendered and observed ISAR images in a purely self-supervised manner without 3D supervision. Finally, the 3D mesh model of the target can be retrieved from the learned density field via marching cube. As a result, the proposed RaNeRF can directly reconstruct the 3D structure of targets without explicit feature extraction and correlation of ISAR image sequences. Both quantitative and qualitative results verify the effectiveness of the proposed method. Compared to conventional baseline methods using point clouds, our reconstructed structure is more complete and accurate. In addition, the optimized model can synthesize ISAR images at novel observation direction, which can be used for downstream tasks including data augmentation and target recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼靳完成签到 ,获得积分10
刚刚
2秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
33秒前
33秒前
37秒前
40秒前
瘦瘦以亦发布了新的文献求助10
43秒前
小马甲应助瘦瘦以亦采纳,获得10
47秒前
58秒前
1分钟前
1分钟前
小左完成签到,获得积分20
1分钟前
1分钟前
小左发布了新的文献求助10
1分钟前
1分钟前
ooops完成签到,获得积分10
1分钟前
1分钟前
SUNny完成签到 ,获得积分10
1分钟前
无花果应助瓜兮兮CYY采纳,获得10
1分钟前
2分钟前
2分钟前
Lan完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
ooops关注了科研通微信公众号
2分钟前
2分钟前
刘言发布了新的文献求助20
2分钟前
儒雅的十八完成签到,获得积分10
2分钟前
瓜兮兮CYY发布了新的文献求助10
2分钟前
kukudou2发布了新的文献求助30
2分钟前
ooops发布了新的文献求助10
2分钟前
顾矜应助杰老爷采纳,获得10
2分钟前
方沅完成签到,获得积分10
2分钟前
3分钟前
刘言完成签到,获得积分20
3分钟前
3分钟前
杰老爷发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4860155
关于积分的说明 15107455
捐赠科研通 4822794
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535928
关于科研通互助平台的介绍 1494160