神经炎症
黑质
基因敲除
酪氨酸羟化酶
小胶质细胞
多巴胺能
纹状体
帕金森病
一氧化氮合酶
化学
神经科学
多巴胺
医学
炎症
免疫学
一氧化氮
生物
内科学
生物化学
细胞凋亡
疾病
作者
Xueyun Chen,Sining Feng,Yin Bao,Yuxin Zhou,Fang Ba
标识
DOI:10.1016/j.bbadis.2023.166814
摘要
Parkinson's disease (PD) is a neurodegenerative disease. Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic tool in PD. High-throughput sequencing was performed to screen potential therapeutic targets in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. The candidate gene, Clec7a, was screened out and validated. Clec7a is a pattern recognition receptor involved in neuroinflammation. The higher expression of Clec7a was observed in the substantia nigra (SN) and striatum of PD rats with dopaminergic neurons damage and was mainly localized in the microglial. Adeno-associated virus (AAV)-mediated specific knockdown of Clec7a in microglial alleviated 6-OHDA induced motor deficits and nigrostriatal dopaminergic neuron damage of rats, as evidenced by the increase of tyrosine hydroxylase (TH) -positive neurons in SN, as well as dopaminergic nerve fibers in the striatum. Clec7a knockdown restrained the neuroinflammation by suppressing inflammatory factors (IFN-γ, TNF-α, IL-1β, IL-18, and IL-6) release in SN, which might result from enhanced Arg-1 expression (M2 polarization) and defective inducible nitric oxide synthase (iNOS) expression (M1 polarization). The same phenomena were also observed in the LPS inflammatory rat model of PD. In vitro, α-synuclein fibrils induced upregulation of Clec7a expression and microglia polarization to a pro-inflammatory state of BV2 cells, leading to increased release of cytokines. However, Clec7a knockdown reversed those changes and induced a shift to an anti-inflammatory phenotype in BV2 cells. In conclusion, our study suggested that Clec7a was involved in PD pathogenesis, and its inhibition might protect rats from PD by depressing neuroinflammation through microglial polarization.
科研通智能强力驱动
Strongly Powered by AbleSci AI