MFI-Net: Multi-Feature Fusion Identification Networks for Artificial Intelligence Manipulation

计算机科学 人工智能 鉴定(生物学) 特征(语言学) 人工神经网络 模式识别(心理学) 语言学 植物 生物 哲学
作者
Ruyong Ren,Qixian Hao,Shaozhang Niu,Keyang Xiong,Jiwei Zhang,Maosen Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1266-1280 被引量:8
标识
DOI:10.1109/tcsvt.2023.3289171
摘要

Tampered images can easily be used for illegal activities, such as spreading rumors, economic fraud, fabricating false news, and illegally obtaining experience benefits, etc. With the improvement and development of artificial intelligence (AI), image manipulation technology has also been further improved, more and more retouching software in daily life adopts AI technology. So far, there is no AI-based tampered dataset. To address this challenge, we propose a dataset-IPM15K. It utilizes the most advanced image processing technology and contains a total of 150,00 doctored vital images. This dataset also could serve as a catalyst for progressing many vision tasks, e.g., localization, segmentation, and alpha-matting, etc. Additionally, we propose an effective multi-feature fusion identification network (MFI-Net) to identify these challenging images. Our model consists of four modules: the detail extraction module (DEM), which utilizes different sizes of convolutions and perceptual fields to extract more valuable information of tampered locations; the multi-branch attention fusion module (MAFM), which fully exploits contextual information of different levels to capture subtle traces of tampering; the feature decoder component (FDC), which combines fused features to identify tampered regions; and the detail enhancement block (DEB), which continues to supplement the detailed information of the detected regions. Extensive experiments on three public datasets and the proposed dataset show that MFI-Net outperforms various state-of-the-art (SOTA) manipulation detection baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Autumn发布了新的文献求助10
刚刚
1秒前
Zx_1993应助CC采纳,获得30
2秒前
2秒前
2秒前
汪汪酱发布了新的文献求助10
2秒前
3秒前
刘耀威完成签到,获得积分10
4秒前
deway发布了新的文献求助10
5秒前
5秒前
朱柯虹发布了新的文献求助10
5秒前
esther完成签到,获得积分10
5秒前
喂喂喂完成签到,获得积分10
5秒前
6秒前
二号发布了新的文献求助10
7秒前
8秒前
民大胡发布了新的文献求助30
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
orixero应助雅阁采纳,获得10
11秒前
Geo_new发布了新的文献求助10
11秒前
Owen应助阔达的棒棒糖采纳,获得10
11秒前
11秒前
浮游应助健壮的悟空采纳,获得10
12秒前
脑洞疼应助小华安采纳,获得10
12秒前
12秒前
张紫茹发布了新的文献求助10
13秒前
13秒前
cooling发布了新的文献求助10
13秒前
14秒前
14秒前
深味i完成签到,获得积分10
15秒前
77m发布了新的文献求助10
15秒前
15秒前
Fen发布了新的文献求助10
16秒前
JJ发布了新的文献求助10
17秒前
黑YA发布了新的文献求助10
17秒前
xiaopan发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087747
求助须知:如何正确求助?哪些是违规求助? 4302968
关于积分的说明 13409636
捐赠科研通 4128431
什么是DOI,文献DOI怎么找? 2260914
邀请新用户注册赠送积分活动 1265026
关于科研通互助平台的介绍 1199399