MFI-Net: Multi-Feature Fusion Identification Networks for Artificial Intelligence Manipulation

计算机科学 人工智能 鉴定(生物学) 特征(语言学) 人工神经网络 模式识别(心理学) 语言学 植物 生物 哲学
作者
Ruyong Ren,Qixian Hao,Shaozhang Niu,Keyang Xiong,Jiwei Zhang,Maosen Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1266-1280 被引量:8
标识
DOI:10.1109/tcsvt.2023.3289171
摘要

Tampered images can easily be used for illegal activities, such as spreading rumors, economic fraud, fabricating false news, and illegally obtaining experience benefits, etc. With the improvement and development of artificial intelligence (AI), image manipulation technology has also been further improved, more and more retouching software in daily life adopts AI technology. So far, there is no AI-based tampered dataset. To address this challenge, we propose a dataset-IPM15K. It utilizes the most advanced image processing technology and contains a total of 150,00 doctored vital images. This dataset also could serve as a catalyst for progressing many vision tasks, e.g., localization, segmentation, and alpha-matting, etc. Additionally, we propose an effective multi-feature fusion identification network (MFI-Net) to identify these challenging images. Our model consists of four modules: the detail extraction module (DEM), which utilizes different sizes of convolutions and perceptual fields to extract more valuable information of tampered locations; the multi-branch attention fusion module (MAFM), which fully exploits contextual information of different levels to capture subtle traces of tampering; the feature decoder component (FDC), which combines fused features to identify tampered regions; and the detail enhancement block (DEB), which continues to supplement the detailed information of the detected regions. Extensive experiments on three public datasets and the proposed dataset show that MFI-Net outperforms various state-of-the-art (SOTA) manipulation detection baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suiqing完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
sopha完成签到,获得积分10
2秒前
cj完成签到,获得积分10
2秒前
Stitch发布了新的文献求助10
3秒前
丘比特应助Zhou采纳,获得10
3秒前
六六安安发布了新的文献求助10
3秒前
李特猪猪仔完成签到,获得积分10
3秒前
勤劳的音响完成签到,获得积分10
4秒前
5秒前
科研通AI6应助xiaobai采纳,获得10
5秒前
fangtong发布了新的文献求助10
5秒前
元气少女猪刚鬣完成签到,获得积分10
5秒前
谦让又琴完成签到,获得积分10
6秒前
咩咩羊发布了新的文献求助10
6秒前
6秒前
6秒前
冬瓜发布了新的文献求助10
6秒前
6秒前
7秒前
NexusExplorer应助开朗的风华采纳,获得30
7秒前
Phuniabo发布了新的文献求助10
7秒前
小马甲应助bai采纳,获得10
7秒前
小马甲应助甘草不甜采纳,获得10
8秒前
LLT发布了新的文献求助10
9秒前
Karma发布了新的文献求助10
9秒前
大个应助小鱼采纳,获得10
9秒前
dq发布了新的文献求助10
9秒前
10秒前
完美糖豆完成签到,获得积分10
10秒前
呜呼发布了新的文献求助10
10秒前
赘婿应助小郭采纳,获得10
10秒前
bkagyin应助小叶不吃香菜采纳,获得10
10秒前
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
SciGPT应助淡然岂愈采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251905
求助须知:如何正确求助?哪些是违规求助? 4415834
关于积分的说明 13747630
捐赠科研通 4287647
什么是DOI,文献DOI怎么找? 2352548
邀请新用户注册赠送积分活动 1349348
关于科研通互助平台的介绍 1308876