MFI-Net: Multi-Feature Fusion Identification Networks for Artificial Intelligence Manipulation

计算机科学 人工智能 鉴定(生物学) 特征(语言学) 人工神经网络 模式识别(心理学) 语言学 植物 生物 哲学
作者
Ruyong Ren,Qixian Hao,Shaozhang Niu,Keyang Xiong,Jiwei Zhang,Maosen Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1266-1280 被引量:8
标识
DOI:10.1109/tcsvt.2023.3289171
摘要

Tampered images can easily be used for illegal activities, such as spreading rumors, economic fraud, fabricating false news, and illegally obtaining experience benefits, etc. With the improvement and development of artificial intelligence (AI), image manipulation technology has also been further improved, more and more retouching software in daily life adopts AI technology. So far, there is no AI-based tampered dataset. To address this challenge, we propose a dataset-IPM15K. It utilizes the most advanced image processing technology and contains a total of 150,00 doctored vital images. This dataset also could serve as a catalyst for progressing many vision tasks, e.g., localization, segmentation, and alpha-matting, etc. Additionally, we propose an effective multi-feature fusion identification network (MFI-Net) to identify these challenging images. Our model consists of four modules: the detail extraction module (DEM), which utilizes different sizes of convolutions and perceptual fields to extract more valuable information of tampered locations; the multi-branch attention fusion module (MAFM), which fully exploits contextual information of different levels to capture subtle traces of tampering; the feature decoder component (FDC), which combines fused features to identify tampered regions; and the detail enhancement block (DEB), which continues to supplement the detailed information of the detected regions. Extensive experiments on three public datasets and the proposed dataset show that MFI-Net outperforms various state-of-the-art (SOTA) manipulation detection baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanny完成签到,获得积分10
1秒前
1秒前
1秒前
好好学习发布了新的文献求助30
2秒前
失眠的汽车完成签到,获得积分10
2秒前
2秒前
西瓜发布了新的文献求助10
3秒前
3秒前
王小帅ok发布了新的文献求助10
3秒前
Sandy完成签到,获得积分10
4秒前
SciGPT应助小张采纳,获得10
4秒前
5秒前
pzh发布了新的文献求助10
5秒前
5秒前
迟梦琪发布了新的文献求助10
5秒前
艾科研发布了新的文献求助10
6秒前
CCR发布了新的文献求助10
6秒前
科研通AI6应助yanziwu94采纳,获得10
6秒前
6秒前
6秒前
顺心紫翠完成签到,获得积分10
7秒前
7秒前
ding应助Frose采纳,获得10
7秒前
科研通AI5应助西瓜采纳,获得10
7秒前
SciGPT应助Ccc采纳,获得10
8秒前
香蕉觅云应助Saya采纳,获得10
8秒前
昏睡的半莲完成签到,获得积分10
8秒前
英俊的铭应助大宝君采纳,获得20
8秒前
1101592875发布了新的文献求助10
9秒前
欢呼的初彤完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
婷婷完成签到,获得积分10
10秒前
10秒前
JamesPei应助李金文采纳,获得10
11秒前
打打应助平常的纸飞机采纳,获得10
11秒前
体贴代容完成签到,获得积分10
11秒前
CodeCraft应助拉萌采纳,获得10
12秒前
希望天下0贩的0应助ww采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543