MFI-Net: Multi-Feature Fusion Identification Networks for Artificial Intelligence Manipulation

计算机科学 人工智能 鉴定(生物学) 特征(语言学) 人工神经网络 模式识别(心理学) 语言学 哲学 植物 生物
作者
Ruyong Ren,Qixian Hao,Shaozhang Niu,Keyang Xiong,Jiwei Zhang,Maosen Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1266-1280 被引量:8
标识
DOI:10.1109/tcsvt.2023.3289171
摘要

Tampered images can easily be used for illegal activities, such as spreading rumors, economic fraud, fabricating false news, and illegally obtaining experience benefits, etc. With the improvement and development of artificial intelligence (AI), image manipulation technology has also been further improved, more and more retouching software in daily life adopts AI technology. So far, there is no AI-based tampered dataset. To address this challenge, we propose a dataset-IPM15K. It utilizes the most advanced image processing technology and contains a total of 150,00 doctored vital images. This dataset also could serve as a catalyst for progressing many vision tasks, e.g., localization, segmentation, and alpha-matting, etc. Additionally, we propose an effective multi-feature fusion identification network (MFI-Net) to identify these challenging images. Our model consists of four modules: the detail extraction module (DEM), which utilizes different sizes of convolutions and perceptual fields to extract more valuable information of tampered locations; the multi-branch attention fusion module (MAFM), which fully exploits contextual information of different levels to capture subtle traces of tampering; the feature decoder component (FDC), which combines fused features to identify tampered regions; and the detail enhancement block (DEB), which continues to supplement the detailed information of the detected regions. Extensive experiments on three public datasets and the proposed dataset show that MFI-Net outperforms various state-of-the-art (SOTA) manipulation detection baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaochuan发布了新的文献求助10
刚刚
pan发布了新的文献求助10
1秒前
colinbar发布了新的文献求助10
1秒前
晴光完成签到 ,获得积分10
2秒前
2秒前
无花果应助SHXSJN采纳,获得30
3秒前
独特夜绿发布了新的文献求助10
3秒前
ll完成签到,获得积分10
4秒前
time_xv发布了新的文献求助10
6秒前
7秒前
Lagom发布了新的文献求助10
7秒前
萧水白应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
tramp应助科研通管家采纳,获得10
8秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
盒子应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
pluto应助科研通管家采纳,获得10
9秒前
10秒前
英俊的铭应助lyt采纳,获得10
10秒前
13秒前
13秒前
n22JDb发布了新的文献求助10
13秒前
14秒前
传奇3应助王小小采纳,获得10
14秒前
15秒前
杳鸢应助蒋时晏采纳,获得20
15秒前
16秒前
123455发布了新的文献求助30
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293208
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441437
捐赠科研通 2601499
什么是DOI,文献DOI怎么找? 1419946
科研通“疑难数据库(出版商)”最低求助积分说明 660452
邀请新用户注册赠送积分活动 643063