MFI-Net: Multi-Feature Fusion Identification Networks for Artificial Intelligence Manipulation

计算机科学 人工智能 鉴定(生物学) 特征(语言学) 人工神经网络 模式识别(心理学) 语言学 植物 生物 哲学
作者
Ruyong Ren,Qixian Hao,Shaozhang Niu,Keyang Xiong,Jiwei Zhang,Maosen Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1266-1280 被引量:8
标识
DOI:10.1109/tcsvt.2023.3289171
摘要

Tampered images can easily be used for illegal activities, such as spreading rumors, economic fraud, fabricating false news, and illegally obtaining experience benefits, etc. With the improvement and development of artificial intelligence (AI), image manipulation technology has also been further improved, more and more retouching software in daily life adopts AI technology. So far, there is no AI-based tampered dataset. To address this challenge, we propose a dataset-IPM15K. It utilizes the most advanced image processing technology and contains a total of 150,00 doctored vital images. This dataset also could serve as a catalyst for progressing many vision tasks, e.g., localization, segmentation, and alpha-matting, etc. Additionally, we propose an effective multi-feature fusion identification network (MFI-Net) to identify these challenging images. Our model consists of four modules: the detail extraction module (DEM), which utilizes different sizes of convolutions and perceptual fields to extract more valuable information of tampered locations; the multi-branch attention fusion module (MAFM), which fully exploits contextual information of different levels to capture subtle traces of tampering; the feature decoder component (FDC), which combines fused features to identify tampered regions; and the detail enhancement block (DEB), which continues to supplement the detailed information of the detected regions. Extensive experiments on three public datasets and the proposed dataset show that MFI-Net outperforms various state-of-the-art (SOTA) manipulation detection baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳沛柔完成签到,获得积分10
刚刚
ding应助py999采纳,获得10
刚刚
CCsci发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
李泽洋发布了新的文献求助20
1秒前
仁爱的雁芙完成签到,获得积分10
1秒前
那咋了完成签到,获得积分20
1秒前
kikuru完成签到,获得积分20
2秒前
科研通AI6应助樊念烟采纳,获得10
2秒前
2秒前
3秒前
香蕉觅云应助xiaozy采纳,获得10
3秒前
wu完成签到,获得积分10
3秒前
4秒前
4秒前
从前慢完成签到,获得积分10
4秒前
4秒前
秦QQ完成签到 ,获得积分20
4秒前
xyh发布了新的文献求助30
4秒前
ybigwhite发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
王迪迪完成签到,获得积分10
5秒前
6秒前
勤劳沛柔发布了新的文献求助10
6秒前
zz完成签到,获得积分10
6秒前
那咋了发布了新的文献求助10
6秒前
6秒前
6秒前
bkagyin应助phil采纳,获得10
7秒前
乐乐应助大帅采纳,获得50
7秒前
Manuscript发布了新的文献求助10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
王迪迪发布了新的文献求助10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848