Optimal design of validation experiments for the prediction of quantities of interest

计算 计算机科学 选型 实验数据 交叉验证 实验设计 模型验证 算法 数学优化 数学 机器学习 统计 数据科学
作者
Antonin Paquette-Rufiange,Serge Prudhomme,Marc Laforest
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:414: 116182-116182
标识
DOI:10.1016/j.cma.2023.116182
摘要

Numerical predictions of quantities of interest measured within physical systems rely on the use of mathematical models that should be validated, or at best, not invalidated. Model validation usually involves the comparison of experimental data (outputs from the system of interest) and model predictions, both obtained at a specific validation scenario. The design of this validation experiment should be directly relevant to the objective of the model, that of predicting a quantity of interest at a prediction scenario. In this paper, we address two specific issues arising when designing validation experiments. The first issue consists in determining an appropriate validation scenario in cases where the prediction scenario cannot be carried out in a controlled environment. The second issue concerns the selection of observations when the quantity of interest cannot be readily observed. The proposed methodology involves the computation of influence matrices that characterize the response surface of given model functionals. Minimization of the distance between influence matrices allows one to select a validation experiment most representative of the prediction scenario. We illustrate our approach on two numerical examples. The first example considers the validation of a simple model based on an ordinary differential equation governing an object in free fall to put in evidence the importance of the choice of the validation experiment. The second numerical experiment focuses on the transport of a pollutant and demonstrates the impact that the choice of the quantity of interest has on the validation experiment to be performed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粉红大叔完成签到 ,获得积分10
刚刚
楠小秾完成签到,获得积分10
刚刚
十分完成签到,获得积分10
刚刚
qianqian发布了新的文献求助10
1秒前
1秒前
yyyyyxy发布了新的文献求助10
1秒前
如意绾绾发布了新的文献求助10
1秒前
打打应助内向觅海采纳,获得10
1秒前
斯文败类应助CC采纳,获得10
2秒前
DJDJDDDJ发布了新的文献求助10
2秒前
欣慰曼彤发布了新的文献求助10
3秒前
善学以致用应助Zhou采纳,获得10
4秒前
4秒前
4秒前
6秒前
6秒前
7秒前
浮游应助平常酸奶采纳,获得10
7秒前
zzz完成签到 ,获得积分10
7秒前
杨安安完成签到,获得积分10
8秒前
鳗鱼惜芹关注了科研通微信公众号
8秒前
Navial30发布了新的文献求助10
9秒前
晓桐发布了新的文献求助30
9秒前
浮浮世世发布了新的文献求助10
9秒前
CC完成签到,获得积分10
9秒前
Dia发布了新的文献求助10
10秒前
可乐不加冰完成签到,获得积分10
10秒前
可爱初瑶发布了新的文献求助10
10秒前
10秒前
11秒前
英姑应助qianqian采纳,获得10
11秒前
11秒前
匹诺曹发布了新的文献求助10
12秒前
科研通AI6应助如意绾绾采纳,获得10
13秒前
XH发布了新的文献求助10
13秒前
14秒前
14秒前
孟孟发布了新的文献求助10
14秒前
zch关注了科研通微信公众号
15秒前
科研通AI6应助儒雅的书白采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481470
求助须知:如何正确求助?哪些是违规求助? 4582499
关于积分的说明 14385398
捐赠科研通 4511182
什么是DOI,文献DOI怎么找? 2472257
邀请新用户注册赠送积分活动 1458565
关于科研通互助平台的介绍 1432081