Road Adhesion Coefficient Estimation Based on Vehicle-Road Coordination and Deep Learning

卡西姆 人工神经网络 计算机科学 估计 卷积神经网络 模拟 人工智能 工程类 控制(管理) 系统工程
作者
Chunjie Li,Pan Liu,Zhenlong Xie,Zhibin Li,Huan Huan
出处
期刊:Journal of Advanced Transportation [Hindawi Limited]
卷期号:2023: 1-11 被引量:1
标识
DOI:10.1155/2023/3633058
摘要

Accurate estimation of the road adhesion coefficient can help drivers and vehicles perceive changes in road state effectively, reducing the occurrence of traffic crashes accordingly. Therefore, this paper proposes a road adhesion coefficient estimation method based on vehicle-road coordination and deep learning. Firstly, a vehicle-based data feedback system combined with a vehicle-road network cloud is introduced, and CarSim simulation is used to expand the data set and train the model effectively. Then, the dynamic analysis of the whole vehicle is carried out, and the vehicle operation data related to the adhesion coefficient are obtained as the input of the estimation model. Then a combined model of road adhesion coefficient estimation based on self-attention (SA), convolutional neural network (CNN), and long short-term memory (LSTM) is established, to reduce the instability of the prediction, Q-learning is used to optimize the weight of the model. Finally, the model is verified by the simulation data and the actual vehicle-based data. The results show that the vehicle-based data feedback system combined with the vehicle-road network Ccloud is effective, and compared with other commonly used model, the estimation model proposed in this paper can effectively predict the road adhesion coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的怜寒应助aaaabc采纳,获得20
刚刚
刚刚
花花发布了新的文献求助10
刚刚
万能图书馆应助白华苍松采纳,获得10
1秒前
孔大漂亮完成签到,获得积分10
2秒前
3秒前
打打应助HopeStar采纳,获得10
3秒前
3秒前
科研通AI5应助标致小伙采纳,获得30
3秒前
有风发布了新的文献求助10
3秒前
3秒前
路在脚下完成签到 ,获得积分10
3秒前
bkagyin应助GOODYUE采纳,获得10
4秒前
Jasper应助彩色的蓝天采纳,获得10
4秒前
詹严青发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
郭翔完成签到,获得积分10
5秒前
Yeong发布了新的文献求助10
6秒前
jh完成签到 ,获得积分10
6秒前
syq完成签到,获得积分10
7秒前
sfw完成签到,获得积分10
7秒前
8秒前
光亮面包完成签到 ,获得积分10
8秒前
小猪啵比完成签到 ,获得积分10
8秒前
小智发布了新的文献求助10
8秒前
毛慢慢发布了新的文献求助10
8秒前
lilac应助1234567890采纳,获得10
9秒前
OYE发布了新的文献求助10
9秒前
木木发布了新的文献求助10
10秒前
zhy完成签到,获得积分10
11秒前
11秒前
自由的刺猬完成签到,获得积分20
11秒前
潇洒甜瓜发布了新的文献求助10
12秒前
jessie完成签到,获得积分10
12秒前
化学胖子完成签到,获得积分10
12秒前
13秒前
CTL关闭了CTL文献求助
13秒前
詹严青完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759