Population Pharmacokinetic Analysis of Drug–Drug Interactions Between Perampanel and Carbamazepine Using Enzyme Induction Model in Epileptic Patients

卡马西平 药代动力学 酶诱导剂 药理学 吡仑帕奈 人口 协变量 癫痫 均方误差 医学 化学 数学 统计 生物化学 环境卫生 精神科 不利影响
作者
Yuito Fujita,Mariko Murai,Shota Muraki,Kimitaka Suetsugu,Yuichi Tsuchiya,Takeshi Hirota,Naoya Matsunaga,Ichiro Ieiri
出处
期刊:Therapeutic Drug Monitoring [Lippincott Williams & Wilkins]
被引量:4
标识
DOI:10.1097/ftd.0000000000001055
摘要

Perampanel (PER) is an oral antiepileptic drug and its concomitant use with carbamazepine (CBZ) leads to decreased PER concentrations. However, the magnitude of its influence may vary, depending on the dynamics of the enzyme induction properties of CBZ. This study aimed to develop a population pharmacokinetic (PPK) model considering the dynamics of enzyme induction and evaluate the effect of CBZ on PER pharmacokinetics.We retrospectively collected data on patient background, laboratory tests, and prescribed drugs from electronic medical records. We developed 2 PPK models incorporating the effect of CBZ-mediated enzyme induction to describe time-concentration profiles of PER using the following different approaches: (1) treating the concomitant use of CBZ as a categorical covariate (empirical PPK model) and (2) incorporating the time-course of changes in the amount of enzyme by CBZ-mediated induction (semimechanistic PPK model). The bias and precision of the predictions were investigated by calculating the mean error, mean absolute error, and root mean squared error.A total of 133 PER concentrations from 64 patients were available for PPK modelling. PPK analyses showed that the co-administration of CBZ increased the clearance of PER. Goodness-of-fit plots indicated a favorable description of the observed data and low bias. The mean error, mean absolute error, and root mean square error values based on the semimechanistic model were smaller than those obtained using the empirical PPK model for predicting PER concentrations in patients with CBZ.We developed 2 PPK models to describe PER pharmacokinetics based on different approaches, using electronic medical record data. Our PPK models support the use of PER in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨鹏关注了科研通微信公众号
刚刚
1秒前
kk发布了新的文献求助10
2秒前
GCXH发布了新的文献求助10
3秒前
科研通AI5应助科研探索者采纳,获得10
4秒前
4秒前
Suysheng完成签到,获得积分10
5秒前
虾米完成签到,获得积分20
5秒前
JamesPei应助Nelson采纳,获得10
6秒前
郭盾发布了新的文献求助10
7秒前
完美芹完成签到,获得积分10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
YH应助科研通管家采纳,获得80
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
huahero2025应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
随即市民z女士完成签到,获得积分10
11秒前
杨鹏发布了新的文献求助10
12秒前
虾米发布了新的文献求助20
12秒前
13秒前
15秒前
15秒前
明理的依柔完成签到,获得积分10
17秒前
17秒前
悬铃木发布了新的文献求助10
18秒前
18秒前
18秒前
科研菜鸡发布了新的文献求助20
19秒前
20秒前
weadu发布了新的文献求助10
20秒前
21秒前
23秒前
难啊难发布了新的文献求助10
23秒前
研究生发布了新的文献求助10
23秒前
田様应助Silole采纳,获得10
23秒前
24秒前
赘婿应助肥宅快乐水采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756727
求助须知:如何正确求助?哪些是违规求助? 3300097
关于积分的说明 10112243
捐赠科研通 3014504
什么是DOI,文献DOI怎么找? 1655600
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546