Population Pharmacokinetic Analysis of Drug–Drug Interactions Between Perampanel and Carbamazepine Using Enzyme Induction Model in Epileptic Patients

卡马西平 药代动力学 酶诱导剂 药理学 吡仑帕奈 人口 协变量 癫痫 均方误差 医学 化学 数学 统计 生物化学 精神科 环境卫生 不利影响
作者
Yuito Fujita,Mariko Murai,Shota Muraki,Kimitaka Suetsugu,Yuichi Tsuchiya,Takeshi Hirota,Naoya Matsunaga,Ichiro Ieiri
出处
期刊:Therapeutic Drug Monitoring [Ovid Technologies (Wolters Kluwer)]
被引量:4
标识
DOI:10.1097/ftd.0000000000001055
摘要

Perampanel (PER) is an oral antiepileptic drug and its concomitant use with carbamazepine (CBZ) leads to decreased PER concentrations. However, the magnitude of its influence may vary, depending on the dynamics of the enzyme induction properties of CBZ. This study aimed to develop a population pharmacokinetic (PPK) model considering the dynamics of enzyme induction and evaluate the effect of CBZ on PER pharmacokinetics.We retrospectively collected data on patient background, laboratory tests, and prescribed drugs from electronic medical records. We developed 2 PPK models incorporating the effect of CBZ-mediated enzyme induction to describe time-concentration profiles of PER using the following different approaches: (1) treating the concomitant use of CBZ as a categorical covariate (empirical PPK model) and (2) incorporating the time-course of changes in the amount of enzyme by CBZ-mediated induction (semimechanistic PPK model). The bias and precision of the predictions were investigated by calculating the mean error, mean absolute error, and root mean squared error.A total of 133 PER concentrations from 64 patients were available for PPK modelling. PPK analyses showed that the co-administration of CBZ increased the clearance of PER. Goodness-of-fit plots indicated a favorable description of the observed data and low bias. The mean error, mean absolute error, and root mean square error values based on the semimechanistic model were smaller than those obtained using the empirical PPK model for predicting PER concentrations in patients with CBZ.We developed 2 PPK models to describe PER pharmacokinetics based on different approaches, using electronic medical record data. Our PPK models support the use of PER in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
y.发布了新的文献求助10
1秒前
玫瑰发布了新的文献求助10
1秒前
Linda完成签到,获得积分10
2秒前
2秒前
杳鸢完成签到,获得积分0
3秒前
田様应助张耀文采纳,获得10
4秒前
zcy完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
so000应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
明理碧发布了新的文献求助10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
期刊应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
so000应助科研通管家采纳,获得10
6秒前
妮妮应助科研通管家采纳,获得10
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
王饱饱应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得30
6秒前
whatever应助科研通管家采纳,获得20
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461762
求助须知:如何正确求助?哪些是违规求助? 3055433
关于积分的说明 9047944
捐赠科研通 2745204
什么是DOI,文献DOI怎么找? 1506061
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695450