Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模态(人机交互) 卷积神经网络 图像分割 模式识别(心理学) 医学影像学 计算机视觉 适应(眼睛) 深度学习 光学 物理
作者
Junlin Xian,Xiang Li,Dandan Tu,Senhua Zhu,Changzheng Zhang,Xiaowu Liu,Xin Li,Xin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1774-1785 被引量:11
标识
DOI:10.1109/tmi.2023.3238114
摘要

Deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation; however, their performance could degrade significantly when being deployed to unseen data with heterogeneous characteristics. Unsupervised domain adaptation (UDA) is a promising solution to tackle this problem. In this work, we present a novel UDA method, named dual adaptation-guiding network (DAG-Net), which incorporates two highly effective and complementary structural-oriented guidance in training to collaboratively adapt a segmentation model from a labelled source domain to an unlabeled target domain. Specifically, our DAG-Net consists of two core modules: 1) Fourier-based contrastive style augmentation (FCSA) which implicitly guides the segmentation network to focus on learning modality-insensitive and structural-relevant features, and 2) residual space alignment (RSA) which provides explicit guidance to enhance the geometric continuity of the prediction in the target modality based on a 3D prior of inter-slice correlation. We have extensively evaluated our method with cardiac substructure and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our DAG-Net greatly outperforms the state-of-the-art UDA approaches for 3D medical image segmentation on unlabeled target images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
growl发布了新的文献求助10
刚刚
田様应助bestweiguo采纳,获得30
刚刚
duduguai发布了新的文献求助30
1秒前
1秒前
科研通AI2S应助贺光萌采纳,获得10
1秒前
科研通AI6应助柚子采纳,获得10
2秒前
WJN关闭了WJN文献求助
3秒前
zzjj完成签到,获得积分10
3秒前
xjx发布了新的文献求助10
3秒前
4秒前
Aurora完成签到,获得积分10
4秒前
qu蛐完成签到 ,获得积分10
4秒前
郗栗发布了新的文献求助10
4秒前
思源应助哭泣的书兰采纳,获得10
5秒前
浮游应助慢慢的地理人采纳,获得10
5秒前
6秒前
ABC完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
无奈元容完成签到,获得积分10
8秒前
偏遇发布了新的文献求助10
9秒前
9秒前
科研通AI6应助快乐采纳,获得10
9秒前
9秒前
午盏发布了新的文献求助10
10秒前
大个应助lucky采纳,获得10
13秒前
神秘猎牛人应助古德day采纳,获得10
14秒前
14秒前
14秒前
Retromer完成签到,获得积分10
14秒前
YXY发布了新的文献求助10
14秒前
14秒前
14秒前
赘婿应助niufuking采纳,获得10
15秒前
15秒前
18秒前
romance发布了新的文献求助10
18秒前
19秒前
蓦然发布了新的文献求助10
19秒前
cc发布了新的文献求助10
20秒前
个性的平蓝完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953