Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模态(人机交互) 卷积神经网络 图像分割 模式识别(心理学) 医学影像学 计算机视觉 适应(眼睛) 深度学习 光学 物理
作者
Junlin Xian,Xiang Li,Dandan Tu,Senhua Zhu,Changzheng Zhang,Xiaowu Liu,Xin Li,Xin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1774-1785 被引量:11
标识
DOI:10.1109/tmi.2023.3238114
摘要

Deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation; however, their performance could degrade significantly when being deployed to unseen data with heterogeneous characteristics. Unsupervised domain adaptation (UDA) is a promising solution to tackle this problem. In this work, we present a novel UDA method, named dual adaptation-guiding network (DAG-Net), which incorporates two highly effective and complementary structural-oriented guidance in training to collaboratively adapt a segmentation model from a labelled source domain to an unlabeled target domain. Specifically, our DAG-Net consists of two core modules: 1) Fourier-based contrastive style augmentation (FCSA) which implicitly guides the segmentation network to focus on learning modality-insensitive and structural-relevant features, and 2) residual space alignment (RSA) which provides explicit guidance to enhance the geometric continuity of the prediction in the target modality based on a 3D prior of inter-slice correlation. We have extensively evaluated our method with cardiac substructure and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our DAG-Net greatly outperforms the state-of-the-art UDA approaches for 3D medical image segmentation on unlabeled target images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅沛菡发布了新的文献求助10
刚刚
1秒前
1秒前
烟花应助小白采纳,获得20
3秒前
5秒前
6秒前
落后的怀柔完成签到,获得积分10
6秒前
7秒前
7秒前
斯文败类应助ycg采纳,获得10
7秒前
墨尘发布了新的文献求助10
8秒前
8秒前
fuiee完成签到,获得积分10
10秒前
Jasper应助QTQ采纳,获得10
10秒前
10秒前
jorgan完成签到,获得积分10
11秒前
11秒前
江洋大盗发布了新的文献求助10
12秒前
懒虫儿坤发布了新的文献求助10
12秒前
lilili发布了新的文献求助10
13秒前
yolo完成签到,获得积分10
13秒前
VX完成签到,获得积分10
13秒前
15秒前
白华苍松发布了新的文献求助10
15秒前
BINGBING1230发布了新的文献求助10
18秒前
00完成签到,获得积分10
19秒前
20秒前
传奇3应助我问问采纳,获得10
21秒前
21秒前
传奇3应助懒虫儿坤采纳,获得10
21秒前
科研通AI6应助yolo采纳,获得10
22秒前
23秒前
氦hai发布了新的文献求助10
23秒前
23秒前
彭于晏应助伯克利芙蓉王采纳,获得10
24秒前
斯文败类应助gexiaoyang采纳,获得10
25秒前
清爽的绫完成签到,获得积分10
25秒前
27秒前
orixero应助安琦采纳,获得10
27秒前
TKTKW发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537866
求助须知:如何正确求助?哪些是违规求助? 4625252
关于积分的说明 14595177
捐赠科研通 4565743
什么是DOI,文献DOI怎么找? 2502625
邀请新用户注册赠送积分活动 1481106
关于科研通互助平台的介绍 1452360