Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模态(人机交互) 卷积神经网络 图像分割 模式识别(心理学) 医学影像学 计算机视觉 适应(眼睛) 深度学习 光学 物理
作者
Junlin Xian,Xiang Li,Dandan Tu,Senhua Zhu,Changzheng Zhang,Xiaowu Liu,Xin Li,Xin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1774-1785 被引量:11
标识
DOI:10.1109/tmi.2023.3238114
摘要

Deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation; however, their performance could degrade significantly when being deployed to unseen data with heterogeneous characteristics. Unsupervised domain adaptation (UDA) is a promising solution to tackle this problem. In this work, we present a novel UDA method, named dual adaptation-guiding network (DAG-Net), which incorporates two highly effective and complementary structural-oriented guidance in training to collaboratively adapt a segmentation model from a labelled source domain to an unlabeled target domain. Specifically, our DAG-Net consists of two core modules: 1) Fourier-based contrastive style augmentation (FCSA) which implicitly guides the segmentation network to focus on learning modality-insensitive and structural-relevant features, and 2) residual space alignment (RSA) which provides explicit guidance to enhance the geometric continuity of the prediction in the target modality based on a 3D prior of inter-slice correlation. We have extensively evaluated our method with cardiac substructure and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our DAG-Net greatly outperforms the state-of-the-art UDA approaches for 3D medical image segmentation on unlabeled target images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUI完成签到 ,获得积分10
1秒前
情怀应助哦哦哦噢噢噢噢采纳,获得10
3秒前
3秒前
4秒前
帅气善斓发布了新的文献求助10
4秒前
yuanyueyue完成签到,获得积分10
4秒前
5秒前
chall应助一二三四11采纳,获得10
7秒前
7秒前
illi发布了新的文献求助10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
Alex应助科研通管家采纳,获得30
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
小马甲应助Xinzz采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
9秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
Alex应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
思源应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457