清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模态(人机交互) 卷积神经网络 图像分割 模式识别(心理学) 医学影像学 计算机视觉 适应(眼睛) 深度学习 光学 物理
作者
Junlin Xian,Xiang Li,Dandan Tu,Senhua Zhu,Changzheng Zhang,Xiaowu Liu,Xin Li,Xin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1774-1785 被引量:11
标识
DOI:10.1109/tmi.2023.3238114
摘要

Deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation; however, their performance could degrade significantly when being deployed to unseen data with heterogeneous characteristics. Unsupervised domain adaptation (UDA) is a promising solution to tackle this problem. In this work, we present a novel UDA method, named dual adaptation-guiding network (DAG-Net), which incorporates two highly effective and complementary structural-oriented guidance in training to collaboratively adapt a segmentation model from a labelled source domain to an unlabeled target domain. Specifically, our DAG-Net consists of two core modules: 1) Fourier-based contrastive style augmentation (FCSA) which implicitly guides the segmentation network to focus on learning modality-insensitive and structural-relevant features, and 2) residual space alignment (RSA) which provides explicit guidance to enhance the geometric continuity of the prediction in the target modality based on a 3D prior of inter-slice correlation. We have extensively evaluated our method with cardiac substructure and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our DAG-Net greatly outperforms the state-of-the-art UDA approaches for 3D medical image segmentation on unlabeled target images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的青烟完成签到 ,获得积分10
46秒前
激动的似狮完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
感动初蓝完成签到 ,获得积分10
2分钟前
tt完成签到,获得积分10
2分钟前
大鸟依人发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
orixero应助大鸟依人采纳,获得10
4分钟前
cao_bq完成签到,获得积分10
4分钟前
积雪完成签到 ,获得积分10
5分钟前
yang完成签到 ,获得积分10
5分钟前
cao_bq发布了新的文献求助10
5分钟前
5分钟前
一道光发布了新的文献求助30
5分钟前
JamesPei应助一道光采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
灵巧的代芙完成签到 ,获得积分10
6分钟前
科研通AI6应助LinWu采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
9分钟前
gexzygg应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
10分钟前
充电宝应助乐正文涛采纳,获得10
10分钟前
wrl2023完成签到,获得积分10
10分钟前
赘婿应助hourt2395采纳,获得10
10分钟前
LinWu完成签到,获得积分10
10分钟前
LinWu发布了新的文献求助10
11分钟前
11分钟前
hourt2395发布了新的文献求助10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646648
关于积分的说明 14678717
捐赠科研通 4587987
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490543
关于科研通互助平台的介绍 1461566