Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模态(人机交互) 卷积神经网络 图像分割 模式识别(心理学) 医学影像学 计算机视觉 适应(眼睛) 深度学习 光学 物理
作者
Junlin Xian,Xiang Li,Dandan Tu,Senhua Zhu,Changzheng Zhang,Xiaowu Liu,Xin Li,Xin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1774-1785 被引量:11
标识
DOI:10.1109/tmi.2023.3238114
摘要

Deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation; however, their performance could degrade significantly when being deployed to unseen data with heterogeneous characteristics. Unsupervised domain adaptation (UDA) is a promising solution to tackle this problem. In this work, we present a novel UDA method, named dual adaptation-guiding network (DAG-Net), which incorporates two highly effective and complementary structural-oriented guidance in training to collaboratively adapt a segmentation model from a labelled source domain to an unlabeled target domain. Specifically, our DAG-Net consists of two core modules: 1) Fourier-based contrastive style augmentation (FCSA) which implicitly guides the segmentation network to focus on learning modality-insensitive and structural-relevant features, and 2) residual space alignment (RSA) which provides explicit guidance to enhance the geometric continuity of the prediction in the target modality based on a 3D prior of inter-slice correlation. We have extensively evaluated our method with cardiac substructure and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our DAG-Net greatly outperforms the state-of-the-art UDA approaches for 3D medical image segmentation on unlabeled target images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Luna_aaa应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
自觉的火龙果完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
yznfly应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
路人乙发布了新的文献求助10
1秒前
2秒前
3秒前
小萝卜莉完成签到,获得积分10
3秒前
溫蒂完成签到,获得积分10
4秒前
科研通AI6应助认真的rain采纳,获得10
4秒前
aaa完成签到,获得积分10
4秒前
活力柔发布了新的文献求助10
5秒前
BruceLiu发布了新的文献求助10
5秒前
5秒前
tartyang完成签到,获得积分10
7秒前
7秒前
顾矜应助欣喜的素采纳,获得10
7秒前
云泥完成签到 ,获得积分10
7秒前
呆萌沛蓝完成签到,获得积分10
7秒前
8秒前
帅b完成签到,获得积分10
8秒前
丘比特应助天马采纳,获得10
8秒前
寸寸发布了新的文献求助10
11秒前
脑洞疼应助林二车娜姆采纳,获得10
11秒前
CHEN发布了新的文献求助10
12秒前
小伍发布了新的文献求助10
12秒前
WY完成签到,获得积分20
12秒前
ccm应助Dr.c采纳,获得10
12秒前
smile完成签到,获得积分10
13秒前
14秒前
chuan发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643395
求助须知:如何正确求助?哪些是违规求助? 4761165
关于积分的说明 15020721
捐赠科研通 4801748
什么是DOI,文献DOI怎么找? 2567022
邀请新用户注册赠送积分活动 1524822
关于科研通互助平台的介绍 1484386