亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模态(人机交互) 卷积神经网络 图像分割 模式识别(心理学) 医学影像学 计算机视觉 适应(眼睛) 深度学习 光学 物理
作者
Junlin Xian,Xiang Li,Dandan Tu,Senhua Zhu,Changzheng Zhang,Xiaowu Liu,Xin Li,Xin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1774-1785 被引量:11
标识
DOI:10.1109/tmi.2023.3238114
摘要

Deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation; however, their performance could degrade significantly when being deployed to unseen data with heterogeneous characteristics. Unsupervised domain adaptation (UDA) is a promising solution to tackle this problem. In this work, we present a novel UDA method, named dual adaptation-guiding network (DAG-Net), which incorporates two highly effective and complementary structural-oriented guidance in training to collaboratively adapt a segmentation model from a labelled source domain to an unlabeled target domain. Specifically, our DAG-Net consists of two core modules: 1) Fourier-based contrastive style augmentation (FCSA) which implicitly guides the segmentation network to focus on learning modality-insensitive and structural-relevant features, and 2) residual space alignment (RSA) which provides explicit guidance to enhance the geometric continuity of the prediction in the target modality based on a 3D prior of inter-slice correlation. We have extensively evaluated our method with cardiac substructure and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our DAG-Net greatly outperforms the state-of-the-art UDA approaches for 3D medical image segmentation on unlabeled target images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
秋日思语发布了新的文献求助10
17秒前
张燕完成签到,获得积分10
38秒前
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
英俊的铭应助热情高跟鞋采纳,获得10
2分钟前
这学真难读下去完成签到,获得积分10
2分钟前
2分钟前
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
热情高跟鞋完成签到,获得积分10
2分钟前
2分钟前
无花果发布了新的文献求助10
2分钟前
CodeCraft应助cube半肥半瘦采纳,获得10
3分钟前
4分钟前
观众发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
星辰大海应助1762120采纳,获得10
4分钟前
orixero应助余馨怡采纳,获得10
4分钟前
5分钟前
田様应助小橘子吃傻子采纳,获得10
5分钟前
1762120发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
mengran完成签到,获得积分10
7分钟前
赫连山菡完成签到,获得积分10
8分钟前
8分钟前
sobereva完成签到,获得积分10
8分钟前
8分钟前
余馨怡发布了新的文献求助10
8分钟前
sobereva发布了新的文献求助10
9分钟前
芸栖完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210860
求助须知:如何正确求助?哪些是违规求助? 4387506
关于积分的说明 13662882
捐赠科研通 4247463
什么是DOI,文献DOI怎么找? 2330295
邀请新用户注册赠送积分活动 1328047
关于科研通互助平台的介绍 1280842