Textual data transformations using natural language processing for risk assessment

计算机科学 稳健性(进化) 数据挖掘 自然语言 风险评估 自然语言处理 人工智能 数据科学 风险分析(工程) 机器学习 医学 生物化学 化学 计算机安全 基因
作者
Mohammad Zaid Kamil,Mohammed Taleb‐Berrouane,Faisal Khan,Paul Amyotte,Salim Ahmed
出处
期刊:Risk Analysis [Wiley]
卷期号:43 (10): 2033-2052 被引量:16
标识
DOI:10.1111/risa.14100
摘要

Underlying information about failure, including observations made in free text, can be a good source for understanding, analyzing, and extracting meaningful information for determining causation. The unstructured nature of natural language expression demands advanced methodology to identify its underlying features. There is no available solution to utilize unstructured data for risk assessment purposes. Due to the scarcity of relevant data, textual data can be a vital learning source for developing a risk assessment methodology. This work addresses the knowledge gap in extracting relevant features from textual data to develop cause-effect scenarios with minimal manual interpretation. This study applies natural language processing and text-mining techniques to extract features from past accident reports. The extracted features are transformed into parametric form with the help of fuzzy set theory and utilized in Bayesian networks as prior probabilities for risk assessment. An application of the proposed methodology is shown in microbiologically influenced corrosion-related incident reports available from the Pipeline and Hazardous Material Safety Administration database. In addition, the trained named entity recognition (NER) model is verified on eight incidents, showing a promising preliminary result for identifying all relevant features from textual data and demonstrating the robustness and applicability of the NER method. The proposed methodology can be used in domain-specific risk assessment to analyze, predict, and prevent future mishaps, ameliorating overall process safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
砥砺完成签到,获得积分10
1秒前
CipherSage应助笑点低不言采纳,获得10
1秒前
2秒前
ddffgz发布了新的文献求助10
2秒前
Alfred_Y发布了新的文献求助10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
木辛艺发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
好好学习完成签到,获得积分10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得30
4秒前
每天看一篇论文完成签到,获得积分10
5秒前
柠觉呢完成签到 ,获得积分10
5秒前
南城不南完成签到 ,获得积分10
6秒前
善学以致用应助raiychemj采纳,获得10
6秒前
王予曦完成签到,获得积分10
6秒前
开元完成签到,获得积分10
6秒前
gxy完成签到,获得积分10
6秒前
zoiaii完成签到 ,获得积分10
6秒前
迷你小五发布了新的文献求助30
7秒前
小二郎应助ddffgz采纳,获得10
7秒前
莫友安完成签到,获得积分10
8秒前
Lucas应助秋无远近采纳,获得10
8秒前
务实白开水完成签到 ,获得积分10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479