材料科学
钼酸盐
铋
压电
成骨细胞
纳米技术
化学工程
冶金
复合材料
生物化学
体外
化学
工程类
作者
Anqi Song,Xiaodong Qi,Shangyu Xie,Xiaolin Wu,Jie Wei,Yong Dai
标识
DOI:10.1021/acsami.5c00774
摘要
The development of piezoelectric biomaterials with the capability to produce electrical signals and scavenge reactive oxygen species (ROS) is a novel strategy for stimulating osteoblast responses and promoting bone regeneration. Herein, tungsten (W), iridium (Ir), and ruthenium (Ru) codoped bismuth molybdate (4(W/Ru/Ir)-BMO) nanosheets with improved piezoelectricity and enzyme-like (CAT-like and SOD-like) activities were constructed by using the hydrothermal method. A composite hydrogel of oxidized sodium alginate/gelatin (OSA/GEL) and 4(W/Ru/Ir)-BMO (OSA/GEL/4-B) was also prepared. Due to the presence of 4(W/Ru/Ir)-BMO, OSA/GEL/4-B exhibited not only piezoelectricity but also enzyme-like activities. Under ultrasound (US), OSA/GEL/4-B generated electrical signals that significantly promoted the proliferation and osteogenic differentiation of bone marrow stromal cells. Furthermore, the piezoelectric effect of OSA/GEL/4-B improved the CAT-like (production of oxygen) and SOD-like (scavenger of ROS) activities. The improved piezoelectricity of 4(W/Ru/Ir)-BMO was attributed to the codoping of W, Ir, and Ru ions, which resulted in lattice distortion and enhanced crystal asymmetry, which produced electrical signals for regulating the osteogenic microenvironment. Moreover, the improvement of enzyme-like activities was attributed to the enhanced piezoelectric effect by the codoping of W, Ir, and Ru ions, which generated a piezoelectric field triggered by US that accelerated electron transfer for alleviating cellular oxidative stress and provided an antioxidant microenvironment for osteoblast responses. This piezoelectric hydrogel may provide a novel pathway for promoting osteogenic differentiation and bone regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI