Alessio Ugolini,Alessandra De Leo,Xiaoqing Yu,Fabio Scirocchi,Xiaoxian Liu,Bárbara Peixoto,Delia Scocozza,Angelica Pace,Michela Perego,Alessandro Gardini,Luca D’Angelo,James K. Liu,Arnold B. Etame,Aurelia Rughetti,Marianna Nuti,Antonio Santoro,Michael A. Vogelbaum,José R. Conejo-García,Paulo C. Rodrı́guez,Filippo Veglia
出处
期刊:Cancer Discovery [American Association for Cancer Research] 日期:2025-02-27
Abstract Despite functional heterogeneity, high frequency of intratumoral neutrophils predicts poor clinical outcomes. The tumor microenvironment reprograms neutrophils into immunosuppressive subsets that hinder anti-cancer immunity, thereby contributing to tumor growth and resistance to immunotherapies. However, the mechanisms underlying neutrophil reprogramming remain elusive. Here, we report that the immunosuppressive ability of brain tumor-infiltrating neutrophils was restricted to a highly glycolytic and long-lived subset expressing CD71, which acquired immunosuppressive properties in response to hypoxia. Mechanistically, hypoxia boosted glucose metabolism in CD71+neutrophils, leading to high lactate production. Lactate caused histone lactylation, which subsequently regulated arginase-1 expression, required for T cell suppression. Targeting histone lactylation with the anti-epileptic drug isosafrole blocked CD71+neutrophil immunosuppressive ability, delayed tumor progression and sensitized brain tumors to immunotherapy. A distinctive gene signature characterizing immunosuppressive CD71+neutrophils correlated with adverse clinical outcomes across diverse human malignancies. This study identifies histone lactylation as a potential therapeutic target to counteract neutrophil-induced immunosuppression within tumors.