Influence of the Gap Distance and Morphology on the Plasmon Modes of Gold Nanocube Dimers

材料科学 等离子体子 形态学(生物学) 纳米技术 光电子学 遗传学 生物
作者
Jesús Barrio,Ramón Manzorro,Ana Sánchez‐Iglesias,David Rodríguez‐San‐Miguel,Marc Coronado‐Puchau,Consuelo Moreno,Judith Langer,Antonio I. Fernández‐Domínguez,Susana Trasobares,Luis M. Liz‐Marzán,Félix Zamora,Beatriz H. Juárez
出处
期刊:Advanced Optical Materials [Wiley]
标识
DOI:10.1002/adom.202500042
摘要

Abstract Plasmonic metallic nanostructures have gained significant attention due to their ability to confine light at the nanoscale. In this study, the influence of minor morphological variations by truncation of different planes on the plasmonic response of colloidal Au nanocube dimers and their separation (nanogap) is investigated by electron energy loss spectroscopy (EELS). To understand the impact of these factors, two different cube models for numerical simulations have been considered: one mimicking the truncation by {111} facets, and another mimicking their truncation by {110} ones. The experimental results, supported by numerical simulations, reveal two origins for the sensitivity of EELS spectra to nanostructure truncation: the plasmonic modes' dependence on facet geometry at the nanogap between Au nanocubes and the beam position's precision, which governs excitation efficiency. Notably, the nanogap distances between Au nanocubes are accurately measured using edge spread functions from High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) images, demonstrating that STEM mode provides superior precision compared to the more commonly used TEM modes. These findings contribute to a deeper understanding of the relationship between structural features and plasmonic behavior in Au nanocube dimers, crucial for the designing next‐generation plasmonic devices, including quantum plasmonic systems and SERS‐based sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助鬼先生采纳,获得10
刚刚
lxy发布了新的文献求助10
1秒前
深情安青应助房谷槐采纳,获得10
2秒前
minguk发布了新的文献求助10
4秒前
yoyo完成签到,获得积分10
11秒前
沉静的夜玉完成签到,获得积分10
11秒前
坚定的泥猴桃完成签到 ,获得积分10
12秒前
大个应助星空采纳,获得10
12秒前
柠觉呢应助mmyhn采纳,获得10
12秒前
科目二三次郎完成签到,获得积分10
13秒前
科研通AI2S应助ttthz采纳,获得10
13秒前
21秒前
传奇3应助科研通管家采纳,获得10
23秒前
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
24秒前
飞飞应助科研通管家采纳,获得10
24秒前
zhiifanfan应助科研通管家采纳,获得10
24秒前
24秒前
25秒前
淀粉肠发布了新的文献求助10
26秒前
认真的adai完成签到,获得积分20
28秒前
30秒前
30秒前
勤劳的雁凡完成签到,获得积分10
33秒前
33秒前
RG完成签到,获得积分10
33秒前
科研通AI5应助牧歌采纳,获得10
35秒前
nowfitness完成签到,获得积分10
37秒前
ZHANGHUI发布了新的文献求助10
38秒前
pluto应助mmm采纳,获得10
43秒前
46秒前
伶俐的冥幽关注了科研通微信公众号
46秒前
47秒前
岁岁完成签到,获得积分10
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775605
求助须知:如何正确求助?哪些是违规求助? 3321216
关于积分的说明 10204180
捐赠科研通 3036039
什么是DOI,文献DOI怎么找? 1665956
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766