OptiDots_v1.0: A Comprehensive Database for Machine Learning-Driven Optimization of Green Synthesis Carbon Dots

计算机科学 碳纤维 人工智能 计算机体系结构 数据库 算法 复合数
作者
Katia Santos,Humberto Gracher Riella,Cíntia Soares,Natan Padoin
标识
DOI:10.26434/chemrxiv-2025-2p16l
摘要

Understanding the relationships between the physicochemical properties of Carbon Dots (CDs) and synthesis parameters is crucial for optimizing their use and accelerating the development of CDs. However, this task is complex due to the diversity of materials, heterogeneity of published data, and limited sampling in individual studies. This work addresses this gap by introducing OptiDots_v1.0, a comprehensive database designed to support the scientific community in optimizing the synthesis of CDs thought machine learning (ML) or by integrating other analytical techniques. From a comprehensive set of 157 publications on the synthesis of CDs derived from green precursors and hydrothermal synthesis, we meticulously obtained data samples related to characteristics such as particle size, quantum yield, synthesis yield, maximum emission and excitation, fluorescence, elemental composition, and applications of 199 CDs, as well as experimental conditions of time, temperature, and precursor type. As a case study, we applied exploratory data analysis and ML techniques to OptiDots_v1.0 to demonstrate its potential in predictive modeling and experimental design. We show the relationships between continuous variables such as synthesis yield and nitrogen contente, as well as particle size and photolumiscence, and with machine learning methods, it was possible to make inferences about emission wavelenght. This approach, integrating quantitative and qualitative data, provides a roadmap to investigate the data on the properties of CDs in the literature and suggests that meta-analysis can help develop methods to predict and optimize the applications of these nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的思山完成签到,获得积分10
1秒前
凶狠的妙柏完成签到,获得积分10
1秒前
1秒前
2秒前
得钦曲珍发布了新的文献求助10
3秒前
mkeale应助feng采纳,获得20
5秒前
伴夏发布了新的文献求助10
7秒前
yang完成签到,获得积分20
7秒前
nn666完成签到,获得积分20
7秒前
8秒前
8秒前
9秒前
10秒前
11秒前
Jay发布了新的文献求助30
13秒前
13秒前
科研狗发布了新的文献求助10
14秒前
15秒前
Big发布了新的文献求助10
15秒前
糟糕的花卷完成签到,获得积分10
15秒前
15秒前
16秒前
枯荣发布了新的文献求助10
16秒前
zhangzz发布了新的文献求助10
17秒前
18秒前
科研通AI5应助恋返竹询采纳,获得10
19秒前
20秒前
rxy完成签到,获得积分10
20秒前
23秒前
无花果应助科研狗采纳,获得10
23秒前
畅快海白发布了新的文献求助10
24秒前
Hello应助13223456采纳,获得10
26秒前
27秒前
27秒前
27秒前
30秒前
伴夏完成签到,获得积分10
30秒前
30秒前
yitiaoyezi完成签到,获得积分10
30秒前
TAKAGI完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736171
求助须知:如何正确求助?哪些是违规求助? 3279959
关于积分的说明 10017840
捐赠科研通 2996576
什么是DOI,文献DOI怎么找? 1644187
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749475