Rapid COD Sensing in Complex Surface Water Using Physicochemical-Informed Spectral Transformer with UV–Vis-SWNIR Spectroscopy

光谱学 紫外可见光谱 地表水 化学 环境化学 分析化学(期刊) 环境科学 环境工程 有机化学 物理 量子力学
作者
J. Y. Liu,Xiao Liu,Xueji Wang,Zi Heng Lim,Hong Liu,Yubo Zhao,Weixing Yu,Yu Tao,Bingliang Hu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c14209
摘要

Water, as a finite and vital resource, necessitates water quality monitoring to ensure its sustainable use. A key aspect of this process is the accurate measurement of critical parameters such as chemical oxygen demand (COD). However, current spectroscopic methods struggle with accurately and consistently measuring COD in large-scale, complex water environments due to an insufficient understanding of water spectra and limited generalizability. To address these limitations, we introduce the physicochemical-informed spectral Transformer (PIST) model, combined with ultraviolet-visible-shortwave-near-infrared (UV-vis-SWNIR) spectroscopy for water quality sensing. To the best of our knowledge, this is the first approach to combine Transformer with spectroscopy for water quality sensing. PIST integrates a physicochemical-informed block to incorporate existing physical and chemical information into the spectral encoding for domain adaptation, along with a feature embedding block for comprehensive spectral features extraction. We validated PIST using an actual surface water spectral data set with extensive geographic coverage including the Yangtze River and Poyang Lake. PIST demonstrated notable performance in COD sensing within complex water environments, achieving an impressive R2 value of 0.9008 and reducing root mean squared error (RMSE) by 45.20% and 29.38% compared to benchmark models such as support vector regression (SVR) and convolutional neural network (CNN). These results emphasize PIST's accuracy and generalizability, marking a significant advancement in multidisciplinary approaches that combine spectroscopy with deep learning for rapid water quality sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦想飞翔发布了新的文献求助10
1秒前
1秒前
绝世镜天完成签到 ,获得积分10
1秒前
2秒前
Underoos完成签到,获得积分10
2秒前
nanlinhua完成签到,获得积分10
2秒前
张桓完成签到,获得积分10
2秒前
Om完成签到,获得积分10
4秒前
Hsia完成签到,获得积分10
5秒前
5秒前
深情安青应助udye采纳,获得10
6秒前
JamesPei应助udye采纳,获得10
6秒前
Lucas应助udye采纳,获得10
6秒前
无限鲜花完成签到,获得积分20
6秒前
7秒前
sundial发布了新的文献求助10
7秒前
SOBER发布了新的文献求助10
7秒前
Akim应助QQ采纳,获得10
7秒前
Underoos发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
日川冈坂发布了新的文献求助10
9秒前
老实夜云发布了新的文献求助10
9秒前
踏实的石头完成签到,获得积分10
9秒前
10秒前
huang完成签到 ,获得积分10
10秒前
Yan发布了新的文献求助10
10秒前
吴文章完成签到 ,获得积分10
12秒前
NexusExplorer应助udye采纳,获得10
12秒前
NexusExplorer应助udye采纳,获得10
12秒前
ding应助udye采纳,获得10
12秒前
丘比特应助udye采纳,获得10
12秒前
wanci应助udye采纳,获得10
12秒前
可爱的函函应助udye采纳,获得10
12秒前
脑洞疼应助udye采纳,获得10
12秒前
李健的小迷弟应助udye采纳,获得10
12秒前
852应助udye采纳,获得10
12秒前
搜集达人应助udye采纳,获得10
12秒前
pierresun发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187