Spectroscopic analyses and photocatalytic properties of transition group metal oxide films with different entropy values

材料科学 光催化 氧化物 过渡金属 金属 熵(时间箭头) 热力学 化学工程 冶金 有机化学 化学 物理 工程类 催化作用
作者
Fei Zhang,Wei Zhou,Yuliang Zhang,Yanhua Lei,Lijun Wu,Tao Liu,Runhua Fan
出处
期刊:Materials Science in Semiconductor Processing [Elsevier]
卷期号:169: 107928-107928 被引量:2
标识
DOI:10.1016/j.mssp.2023.107928
摘要

In this study, transition metal high-entropy oxide thin films were prepared by chemical solution deposition (CSD) method. We investigated the correlation between the maximum shift of binding energy (ΔE) and the average ion diameter (Dav) using X-ray photoelectron spectroscopy (XPS) fitting. It was found that ΔE was positively correlated with Dav, indicating the red shift of ionic binding energy caused by point defects. The presence of point defects was identified as an important factor affecting the photocatalytic performance of the thin films. We also observed that the increased mixing-entropy can reduce the bandgap of the thin films. Among the samples studied, the (Co0.2Mn0.2Fe0.2Cr0.2Cu0.2)3O4 sample exhibited the best light absorption performance and photocatalytic effect. It was able to enhance the photocatalytic efficiency for the degradation of methylene blue (MB) by up to 8.5 times compared to other samples. Moreover, the photon efficiency (ζ) in the visible waveband was approximately 3.3 times higher than that in the near-infrared waveband. This suggests that the high-entropy oxide thin films have excellent utilization of solar energy. For the ternary oxide Mn1.5Co1Ni0.5O4, which has lower entropy, the preparation of type-I N–N heterojunction ZnO/Mn1.5Co1Ni0.5O4 can greatly enhance its redox properties and photocatalytic efficiency. This heterojunction significantly enhanced the performance of the ternary oxide. Overall, these findings provide insights into the preparation of high-efficient and stable photocatalysts using transition group metal oxide films with different entropy values, and contribute to the potential applications in solar energy utilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魂断红颜发布了新的文献求助10
1秒前
思源应助kangkang采纳,获得10
1秒前
科研通AI6应助zls采纳,获得10
2秒前
2秒前
March完成签到,获得积分10
4秒前
吴wu发布了新的文献求助10
4秒前
汤飞飞发布了新的文献求助10
5秒前
6秒前
木子完成签到 ,获得积分10
7秒前
灵巧傥关注了科研通微信公众号
8秒前
zmjjkk发布了新的文献求助10
8秒前
led灯泡完成签到 ,获得积分10
8秒前
大力若烟完成签到,获得积分10
9秒前
烂漫的汲完成签到,获得积分10
9秒前
麦麦完成签到,获得积分10
9秒前
9秒前
Dalia完成签到,获得积分10
13秒前
13秒前
魔力巴啦啦完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
文艺发布了新的文献求助10
15秒前
15秒前
小蘑菇应助魂断红颜采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
三百一十四完成签到 ,获得积分10
17秒前
田様应助板烧猫腿堡采纳,获得10
17秒前
彭于晏应助专注思远采纳,获得10
18秒前
19秒前
jingyu完成签到,获得积分10
21秒前
Yochamme发布了新的文献求助10
22秒前
云馨完成签到,获得积分10
22秒前
舒心凡应助陶醉的手套采纳,获得70
22秒前
23秒前
emzdrm发布了新的文献求助10
25秒前
bingcha990完成签到,获得积分10
26秒前
wolf完成签到,获得积分10
28秒前
dddd完成签到 ,获得积分10
28秒前
lpp_完成签到 ,获得积分10
29秒前
KU完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613528
求助须知:如何正确求助?哪些是违规求助? 4698701
关于积分的说明 14898717
捐赠科研通 4736582
什么是DOI,文献DOI怎么找? 2547083
邀请新用户注册赠送积分活动 1511026
关于科研通互助平台的介绍 1473566