Two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack segmentation

计算机科学 人工智能 分割 残余物 特征(语言学) 模式识别(心理学) 半监督学习 深度学习 特征学习 特征向量 监督学习 机器学习 代表(政治) 基本事实 阶段(地层学) 人工神经网络 地质学 算法 古生物学 哲学 语言学 政治 政治学 法学
作者
Qingsong Song,Wei Yao,Haojiang Tian,Yidan Guo,Ravie Chandren Muniyandi,Yisheng An
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122406-122406 被引量:8
标识
DOI:10.1016/j.eswa.2023.122406
摘要

After the deep learning method emerged, the automated detection technology of pavement crack images has significantly progressed. The dominant approach is supervised deep learning, which relies on large-scale labeled ground truth. However, the problems are mostly unlabeled original crack images, which are difficult to fully utilize by the supervised deep learning network model. As a representative method of self-supervised learning, contrast learning can learn feature representations from unlabeled data, thus improving the accuracy of downstream tasks. This paper proposes a two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack image segmentation. The framework takes improved U-Net as the basic architecture to highlight the significant features of the target segment of fine cracks. U-Net is improved by integrating the residual structure and attention mechanism in the typical U-Net architecture. The framework includes two learning stages: pre-training and fine-tuning. In the pre-training stage, the potential feature representation is learned from the unlabeled crack image. Crack images and pavement background images are used in the training data so that the model learns the distinguishable mapping relationship between crack and its background in the high-dimensional vector space without supervision comparison. In the fine-tuning stage, the network loads the parameters after the pre-training and uses the labeled training data for the retraining. Experimental results show that the proposed two-stage framework significantly improves the performance of crack segmentation accuracy without increasing the number of existing training samples and their labeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李萌完成签到,获得积分20
刚刚
llxiaomianyang完成签到,获得积分10
1秒前
1秒前
星辰大海应助七七采纳,获得10
2秒前
2秒前
拼搏惜蕊发布了新的文献求助10
2秒前
李萌发布了新的文献求助10
2秒前
浩二发布了新的文献求助10
4秒前
浩二发布了新的文献求助10
4秒前
CipherSage应助端庄向雁采纳,获得10
4秒前
muni应助吴豁采纳,获得10
5秒前
科研通AI6应助俊逸的难破采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
CC完成签到,获得积分10
5秒前
poletar发布了新的文献求助10
6秒前
qaz发布了新的文献求助10
6秒前
Tomsen发布了新的文献求助10
6秒前
7秒前
好怀念WE完成签到,获得积分20
7秒前
7秒前
8秒前
科研通AI6应助学术悍匪采纳,获得10
9秒前
李健的小迷弟应助李萌采纳,获得10
9秒前
han发布了新的文献求助10
11秒前
11秒前
WU完成签到,获得积分10
12秒前
mqthhh发布了新的文献求助10
12秒前
多多关注了科研通微信公众号
13秒前
今后应助猪猪hero采纳,获得30
13秒前
sunshine完成签到,获得积分10
14秒前
14秒前
小蘑菇应助kyhappy_2002采纳,获得10
15秒前
CodeCraft应助keweic采纳,获得10
15秒前
黄学无发布了新的文献求助10
15秒前
15秒前
Youngcy应助lmg采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020