Two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack segmentation

计算机科学 人工智能 分割 残余物 特征(语言学) 模式识别(心理学) 半监督学习 深度学习 特征学习 特征向量 监督学习 机器学习 代表(政治) 基本事实 阶段(地层学) 人工神经网络 地质学 算法 古生物学 哲学 政治 法学 语言学 政治学
作者
Qingsong Song,Wei Yao,Haojiang Tian,Yidan Guo,Ravie Chandren Muniyandi,Yisheng An
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122406-122406 被引量:8
标识
DOI:10.1016/j.eswa.2023.122406
摘要

After the deep learning method emerged, the automated detection technology of pavement crack images has significantly progressed. The dominant approach is supervised deep learning, which relies on large-scale labeled ground truth. However, the problems are mostly unlabeled original crack images, which are difficult to fully utilize by the supervised deep learning network model. As a representative method of self-supervised learning, contrast learning can learn feature representations from unlabeled data, thus improving the accuracy of downstream tasks. This paper proposes a two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack image segmentation. The framework takes improved U-Net as the basic architecture to highlight the significant features of the target segment of fine cracks. U-Net is improved by integrating the residual structure and attention mechanism in the typical U-Net architecture. The framework includes two learning stages: pre-training and fine-tuning. In the pre-training stage, the potential feature representation is learned from the unlabeled crack image. Crack images and pavement background images are used in the training data so that the model learns the distinguishable mapping relationship between crack and its background in the high-dimensional vector space without supervision comparison. In the fine-tuning stage, the network loads the parameters after the pre-training and uses the labeled training data for the retraining. Experimental results show that the proposed two-stage framework significantly improves the performance of crack segmentation accuracy without increasing the number of existing training samples and their labeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
企鹅完成签到,获得积分10
1秒前
随便完成签到,获得积分10
1秒前
LMNg6n应助felix采纳,获得50
2秒前
liv发布了新的文献求助10
2秒前
2秒前
poke发布了新的文献求助10
3秒前
3秒前
渡111应助22采纳,获得30
3秒前
3秒前
Alex发布了新的文献求助20
4秒前
Charon发布了新的文献求助10
4秒前
4秒前
无情听南完成签到,获得积分10
4秒前
小马甲应助pass采纳,获得10
5秒前
充电宝应助温暖的颜演采纳,获得10
5秒前
5秒前
Kismet发布了新的文献求助10
5秒前
QJ发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
大根度几张完成签到,获得积分10
7秒前
搜集达人应助feifei采纳,获得10
7秒前
勤恳的文涛完成签到,获得积分10
8秒前
9秒前
9秒前
为你博弈发布了新的文献求助10
9秒前
9秒前
elever11发布了新的文献求助10
9秒前
9秒前
ymxlcfc发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
乐乐应助123采纳,获得10
10秒前
wyzgood完成签到,获得积分10
10秒前
10秒前
风铃发布了新的文献求助10
10秒前
liukang172完成签到,获得积分10
11秒前
chshpy发布了新的文献求助30
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979040
求助须知:如何正确求助?哪些是违规求助? 3522910
关于积分的说明 11215440
捐赠科研通 3260392
什么是DOI,文献DOI怎么找? 1799938
邀请新用户注册赠送积分活动 878751
科研通“疑难数据库(出版商)”最低求助积分说明 807060