Two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack segmentation

计算机科学 人工智能 分割 残余物 特征(语言学) 模式识别(心理学) 半监督学习 深度学习 特征学习 特征向量 监督学习 机器学习 代表(政治) 基本事实 阶段(地层学) 人工神经网络 地质学 算法 古生物学 哲学 政治 法学 语言学 政治学
作者
Qingsong Song,Wei Yao,Haojiang Tian,Yidan Guo,Ravie Chandren Muniyandi,Yisheng An
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122406-122406 被引量:12
标识
DOI:10.1016/j.eswa.2023.122406
摘要

After the deep learning method emerged, the automated detection technology of pavement crack images has significantly progressed. The dominant approach is supervised deep learning, which relies on large-scale labeled ground truth. However, the problems are mostly unlabeled original crack images, which are difficult to fully utilize by the supervised deep learning network model. As a representative method of self-supervised learning, contrast learning can learn feature representations from unlabeled data, thus improving the accuracy of downstream tasks. This paper proposes a two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack image segmentation. The framework takes improved U-Net as the basic architecture to highlight the significant features of the target segment of fine cracks. U-Net is improved by integrating the residual structure and attention mechanism in the typical U-Net architecture. The framework includes two learning stages: pre-training and fine-tuning. In the pre-training stage, the potential feature representation is learned from the unlabeled crack image. Crack images and pavement background images are used in the training data so that the model learns the distinguishable mapping relationship between crack and its background in the high-dimensional vector space without supervision comparison. In the fine-tuning stage, the network loads the parameters after the pre-training and uses the labeled training data for the retraining. Experimental results show that the proposed two-stage framework significantly improves the performance of crack segmentation accuracy without increasing the number of existing training samples and their labeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火山啊啊啊完成签到 ,获得积分10
1秒前
别说话完成签到 ,获得积分10
1秒前
1秒前
zcyyy完成签到,获得积分20
1秒前
科研通AI6应助番茄酱采纳,获得10
1秒前
北风北风发布了新的文献求助20
1秒前
1秒前
粥粥爱糊糊完成签到,获得积分10
2秒前
2秒前
helpme完成签到,获得积分10
2秒前
辣辣完成签到,获得积分10
2秒前
2秒前
ding应助牛肉面采纳,获得10
2秒前
3秒前
3秒前
活泼寻绿发布了新的文献求助10
3秒前
隐形曼青应助唠叨的白猫采纳,获得30
3秒前
3秒前
所所应助风间琉璃采纳,获得10
4秒前
5秒前
一线西风完成签到,获得积分20
5秒前
Owen应助我不李姐采纳,获得10
5秒前
糊涂的冰菱完成签到,获得积分10
5秒前
武当张二丰完成签到,获得积分10
6秒前
mmiww完成签到,获得积分10
6秒前
甜甜发布了新的文献求助10
7秒前
和谐远望发布了新的文献求助10
7秒前
7秒前
饭团的老父亲应助缘然采纳,获得10
7秒前
老大蒂亚戈完成签到,获得积分0
7秒前
西门放狗发布了新的文献求助10
7秒前
风清扬发布了新的文献求助10
7秒前
joejoe发布了新的文献求助10
7秒前
Carl发布了新的文献求助10
8秒前
8秒前
夏夏完成签到,获得积分10
8秒前
顾矜应助铁观音采纳,获得10
8秒前
一颗小纽扣完成签到,获得积分10
8秒前
Smile完成签到,获得积分10
8秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692205
求助须知:如何正确求助?哪些是违规求助? 5087653
关于积分的说明 15207623
捐赠科研通 4849665
什么是DOI,文献DOI怎么找? 2601206
邀请新用户注册赠送积分活动 1552971
关于科研通互助平台的介绍 1511259