SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data

土地覆盖 计算机科学 比例(比率) 遥感 深度学习 注释 精确性和召回率 集合(抽象数据类型) 数据挖掘 数据库 人工智能 土地利用 地图学 地理 土木工程 工程类 程序设计语言
作者
Zhuohong Li,Wei He,Mofan Cheng,Jingxin Hu,Guangyi Yang,Hongyan Zhang
出处
期刊:Earth System Science Data 卷期号:15 (11): 4749-4780 被引量:42
标识
DOI:10.5194/essd-15-4749-2023
摘要

Abstract. In China, the demand for a more precise perception of the national land surface has become most urgent given the pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national coverage, however, is a nontrivial task. Thus, this has become an active area of research that is impeded by the challenges of image acquisition, manual annotation, and computational complexity. To fill this gap, the first 1 m resolution national-scale land-cover map of China, SinoLC-1, was established using a deep-learning-based framework and open-access data, including global land-cover (GLC) products, OpenStreetMap (OSM), and Google Earth imagery. Reliable training labels were generated by combining three 10 m GLC products and OSM data. These training labels and 1 m resolution images derived from Google Earth were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large-storage and computing servers, processing the 73.25 TB dataset to obtain the SinoLC-1 covering the entirety of China, ∼ 9 600 000 km2, took about 10 months. The SinoLC-1 product was validated using a visually interpreted validation set including over 100 000 random samples and a statistical validation set collected from the official land survey report provided by the Chinese government. The validation results showed that SinoLC-1 achieved an overall accuracy of 73.61 % and a κ coefficient of 0.6595. Validations for every provincial region further indicated the accuracy of this dataset across the whole of China. Furthermore, the statistical validation results indicated that SinoLC-1 conformed to the official survey reports with an overall misestimation rate of 6.4 %. In addition, SinoLC-1 was compared with five other widely used GLC products. These results indicated that SinoLC-1 had the highest spatial resolution and the finest landscape details. In conclusion, as the first 1 m resolution national-scale land-cover map of China, SinoLC-1 delivered accuracy and provided primal support for related research and applications throughout China. The SinoLC-1 land-cover product is freely accessible at https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木昉完成签到 ,获得积分10
1秒前
3秒前
现代书雪发布了新的文献求助10
3秒前
fine完成签到,获得积分10
3秒前
biomichael完成签到,获得积分10
4秒前
cocktails完成签到 ,获得积分10
4秒前
5秒前
在水一方应助满意紫菜采纳,获得10
5秒前
5秒前
8秒前
9秒前
笑破果果完成签到,获得积分10
9秒前
longtengfei发布了新的文献求助10
9秒前
Jayce完成签到,获得积分10
10秒前
顾矜应助欢喜大地采纳,获得10
12秒前
14秒前
时尚铁身完成签到 ,获得积分10
15秒前
Orange应助111采纳,获得10
15秒前
17秒前
17秒前
17秒前
lianliyou应助心灵美的沛芹采纳,获得10
17秒前
18秒前
18秒前
满意紫菜完成签到,获得积分20
18秒前
xixi完成签到 ,获得积分10
18秒前
我是老大应助Wei采纳,获得10
19秒前
mhb完成签到 ,获得积分10
20秒前
满意紫菜发布了新的文献求助10
22秒前
欢喜大地发布了新的文献求助10
23秒前
科研通AI2S应助叫叫采纳,获得10
23秒前
李健应助虚心小懒猪采纳,获得10
24秒前
24秒前
FashionBoy应助晚风踏云归采纳,获得10
28秒前
30秒前
dcr4328完成签到,获得积分10
30秒前
呆萌小虾米完成签到,获得积分10
30秒前
orixero应助塞巴斯蒂安啵酱采纳,获得10
30秒前
LeBron完成签到,获得积分10
30秒前
粗暴的涵蕾关注了科研通微信公众号
31秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178289
求助须知:如何正确求助?哪些是违规求助? 2829319
关于积分的说明 7970836
捐赠科研通 2490719
什么是DOI,文献DOI怎么找? 1327734
科研通“疑难数据库(出版商)”最低求助积分说明 635338
版权声明 602904