SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data

土地覆盖 计算机科学 比例(比率) 遥感 深度学习 注释 精确性和召回率 集合(抽象数据类型) 数据挖掘 数据库 人工智能 土地利用 地图学 地理 工程类 土木工程 程序设计语言
作者
Zhuohong Li,Wei He,Mofan Cheng,Jingxin Hu,Guangyi Yang,Hongyan Zhang
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:15 (11): 4749-4780 被引量:42
标识
DOI:10.5194/essd-15-4749-2023
摘要

Abstract. In China, the demand for a more precise perception of the national land surface has become most urgent given the pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national coverage, however, is a nontrivial task. Thus, this has become an active area of research that is impeded by the challenges of image acquisition, manual annotation, and computational complexity. To fill this gap, the first 1 m resolution national-scale land-cover map of China, SinoLC-1, was established using a deep-learning-based framework and open-access data, including global land-cover (GLC) products, OpenStreetMap (OSM), and Google Earth imagery. Reliable training labels were generated by combining three 10 m GLC products and OSM data. These training labels and 1 m resolution images derived from Google Earth were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large-storage and computing servers, processing the 73.25 TB dataset to obtain the SinoLC-1 covering the entirety of China, ∼ 9 600 000 km2, took about 10 months. The SinoLC-1 product was validated using a visually interpreted validation set including over 100 000 random samples and a statistical validation set collected from the official land survey report provided by the Chinese government. The validation results showed that SinoLC-1 achieved an overall accuracy of 73.61 % and a κ coefficient of 0.6595. Validations for every provincial region further indicated the accuracy of this dataset across the whole of China. Furthermore, the statistical validation results indicated that SinoLC-1 conformed to the official survey reports with an overall misestimation rate of 6.4 %. In addition, SinoLC-1 was compared with five other widely used GLC products. These results indicated that SinoLC-1 had the highest spatial resolution and the finest landscape details. In conclusion, as the first 1 m resolution national-scale land-cover map of China, SinoLC-1 delivered accuracy and provided primal support for related research and applications throughout China. The SinoLC-1 land-cover product is freely accessible at https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Songrongrong完成签到 ,获得积分10
2秒前
偏翩完成签到 ,获得积分10
4秒前
Chen完成签到 ,获得积分10
4秒前
木樨完成签到,获得积分10
6秒前
guardsman完成签到 ,获得积分10
7秒前
sigla完成签到 ,获得积分10
8秒前
林家小弟完成签到,获得积分10
8秒前
妥协完成签到 ,获得积分10
8秒前
小生不才完成签到 ,获得积分10
8秒前
舟遥遥完成签到,获得积分10
10秒前
JamesPei应助mjiang0502采纳,获得10
10秒前
liuxshan完成签到,获得积分10
11秒前
dreamsci完成签到 ,获得积分10
12秒前
12秒前
Jenny完成签到,获得积分10
15秒前
曹博完成签到,获得积分10
15秒前
跳跃太清完成签到 ,获得积分10
17秒前
tianxiong完成签到 ,获得积分10
17秒前
苗条白枫完成签到 ,获得积分10
18秒前
Gorge完成签到,获得积分10
20秒前
kehe!完成签到 ,获得积分0
21秒前
sdzl完成签到,获得积分10
22秒前
23秒前
mitty完成签到 ,获得积分10
25秒前
橘子的哈哈怪完成签到,获得积分10
25秒前
sscss完成签到,获得积分10
26秒前
jeffrey完成签到,获得积分10
26秒前
QQLL完成签到,获得积分10
27秒前
hsrlbc完成签到,获得积分10
30秒前
Kelvin.Tsi完成签到 ,获得积分10
31秒前
31秒前
霁昕完成签到 ,获得积分10
33秒前
JC完成签到,获得积分10
33秒前
八硝基立方烷完成签到,获得积分10
36秒前
37秒前
Zhjie126完成签到,获得积分10
37秒前
小潘完成签到,获得积分10
42秒前
小趴菜完成签到 ,获得积分0
42秒前
老冯完成签到 ,获得积分10
44秒前
karate09judges完成签到 ,获得积分10
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003680
捐赠科研通 2993729
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944