SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data

土地覆盖 计算机科学 比例(比率) 遥感 深度学习 注释 精确性和召回率 集合(抽象数据类型) 数据挖掘 数据库 人工智能 土地利用 地图学 地理 土木工程 工程类 程序设计语言
作者
Zhuohong Li,Wei He,Mofan Cheng,Jingxin Hu,Guangyi Yang,Hongyan Zhang
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:15 (11): 4749-4780 被引量:149
标识
DOI:10.5194/essd-15-4749-2023
摘要

Abstract. In China, the demand for a more precise perception of the national land surface has become most urgent given the pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national coverage, however, is a nontrivial task. Thus, this has become an active area of research that is impeded by the challenges of image acquisition, manual annotation, and computational complexity. To fill this gap, the first 1 m resolution national-scale land-cover map of China, SinoLC-1, was established using a deep-learning-based framework and open-access data, including global land-cover (GLC) products, OpenStreetMap (OSM), and Google Earth imagery. Reliable training labels were generated by combining three 10 m GLC products and OSM data. These training labels and 1 m resolution images derived from Google Earth were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large-storage and computing servers, processing the 73.25 TB dataset to obtain the SinoLC-1 covering the entirety of China, ∼ 9 600 000 km2, took about 10 months. The SinoLC-1 product was validated using a visually interpreted validation set including over 100 000 random samples and a statistical validation set collected from the official land survey report provided by the Chinese government. The validation results showed that SinoLC-1 achieved an overall accuracy of 73.61 % and a κ coefficient of 0.6595. Validations for every provincial region further indicated the accuracy of this dataset across the whole of China. Furthermore, the statistical validation results indicated that SinoLC-1 conformed to the official survey reports with an overall misestimation rate of 6.4 %. In addition, SinoLC-1 was compared with five other widely used GLC products. These results indicated that SinoLC-1 had the highest spatial resolution and the finest landscape details. In conclusion, as the first 1 m resolution national-scale land-cover map of China, SinoLC-1 delivered accuracy and provided primal support for related research and applications throughout China. The SinoLC-1 land-cover product is freely accessible at https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡淡兔子完成签到 ,获得积分10
2秒前
2秒前
NXK发布了新的文献求助10
2秒前
2秒前
小夏完成签到,获得积分10
2秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
失眠毛衣发布了新的文献求助10
3秒前
3秒前
王硕硕完成签到,获得积分10
3秒前
3秒前
flybird发布了新的文献求助10
3秒前
wenwen发布了新的文献求助10
4秒前
晨曦完成签到,获得积分10
4秒前
4秒前
任性的傲云完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
小糊涂仙发布了新的文献求助10
5秒前
5秒前
许亦肥发布了新的文献求助10
6秒前
6秒前
6秒前
puzhongjiMiQ发布了新的文献求助10
6秒前
6秒前
郝雨竹郝雨竹完成签到 ,获得积分10
6秒前
精明的中蓝完成签到,获得积分10
6秒前
puzhongjiMiQ发布了新的文献求助10
6秒前
王多肉完成签到,获得积分10
7秒前
没有脑袋完成签到,获得积分10
7秒前
wise111发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
时倾发布了新的文献求助10
8秒前
lwr1234发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932