SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data

土地覆盖 计算机科学 比例(比率) 遥感 深度学习 注释 精确性和召回率 集合(抽象数据类型) 数据挖掘 数据库 人工智能 土地利用 地图学 地理 工程类 土木工程 程序设计语言
作者
Zhuohong Li,Wei He,Mofan Cheng,Jingxin Hu,Guangyi Yang,Hongyan Zhang
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:15 (11): 4749-4780 被引量:42
标识
DOI:10.5194/essd-15-4749-2023
摘要

Abstract. In China, the demand for a more precise perception of the national land surface has become most urgent given the pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national coverage, however, is a nontrivial task. Thus, this has become an active area of research that is impeded by the challenges of image acquisition, manual annotation, and computational complexity. To fill this gap, the first 1 m resolution national-scale land-cover map of China, SinoLC-1, was established using a deep-learning-based framework and open-access data, including global land-cover (GLC) products, OpenStreetMap (OSM), and Google Earth imagery. Reliable training labels were generated by combining three 10 m GLC products and OSM data. These training labels and 1 m resolution images derived from Google Earth were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large-storage and computing servers, processing the 73.25 TB dataset to obtain the SinoLC-1 covering the entirety of China, ∼ 9 600 000 km2, took about 10 months. The SinoLC-1 product was validated using a visually interpreted validation set including over 100 000 random samples and a statistical validation set collected from the official land survey report provided by the Chinese government. The validation results showed that SinoLC-1 achieved an overall accuracy of 73.61 % and a κ coefficient of 0.6595. Validations for every provincial region further indicated the accuracy of this dataset across the whole of China. Furthermore, the statistical validation results indicated that SinoLC-1 conformed to the official survey reports with an overall misestimation rate of 6.4 %. In addition, SinoLC-1 was compared with five other widely used GLC products. These results indicated that SinoLC-1 had the highest spatial resolution and the finest landscape details. In conclusion, as the first 1 m resolution national-scale land-cover map of China, SinoLC-1 delivered accuracy and provided primal support for related research and applications throughout China. The SinoLC-1 land-cover product is freely accessible at https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助lqkcqmu采纳,获得30
刚刚
1秒前
TANG完成签到,获得积分10
1秒前
2秒前
pm完成签到,获得积分20
2秒前
热情铭发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
Jenaloe发布了新的文献求助10
4秒前
自然1111发布了新的文献求助10
4秒前
李健的小迷弟应助哈士轩采纳,获得10
4秒前
4秒前
4秒前
Akim应助怡然嚣采纳,获得30
5秒前
顾矜应助xuexi采纳,获得10
5秒前
lone623发布了新的文献求助10
5秒前
mrz发布了新的文献求助10
5秒前
yx_cheng应助OK采纳,获得30
5秒前
6秒前
菜鸟12完成签到,获得积分20
6秒前
6秒前
20250702完成签到 ,获得积分10
6秒前
夕照古风发布了新的文献求助10
6秒前
单薄的夜南应助wangyalei采纳,获得10
6秒前
打败拖延症完成签到,获得积分10
7秒前
苹果蜗牛发布了新的文献求助10
7秒前
8秒前
Ultraman完成签到,获得积分10
8秒前
王宁发布了新的文献求助10
8秒前
十四完成签到 ,获得积分10
9秒前
LLL发布了新的文献求助10
9秒前
9秒前
开花开花发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
calm发布了新的文献求助10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620