Weighted gene co‐expression network analysis and machine learning identified the lipid metabolism‐related gene LGMN as a novel biomarker for keloid

瘢痕疙瘩 生物标志物 基因表达 免疫系统 基因 脂质代谢 生物 计算生物学 医学 免疫学 遗传学 病理 生物化学
作者
Qirui Wang,Xingtai Huang,Siyi Zeng,Renpeng Zhou,Danru Wang
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (1) 被引量:3
标识
DOI:10.1111/exd.14974
摘要

Abstract The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism‐related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co‐expression network analysis (WGCNA) and the lipid metabolism‐related genes (LMGs). Then, three learning machine algorithms (SVM‐RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein–protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response‐related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2‐type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT‐PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱彗星完成签到,获得积分10
刚刚
杨知意完成签到,获得积分10
1秒前
禾泽完成签到,获得积分10
1秒前
1秒前
陶醉怜容完成签到,获得积分10
1秒前
2秒前
2秒前
zhancon完成签到,获得积分10
3秒前
3秒前
大淼完成签到,获得积分10
3秒前
4秒前
田様应助Ych采纳,获得10
4秒前
5秒前
123完成签到,获得积分10
5秒前
lieditongxu完成签到,获得积分10
6秒前
zhihan完成签到,获得积分10
6秒前
方方别方完成签到 ,获得积分10
7秒前
jxcandice发布了新的文献求助10
7秒前
yx发布了新的文献求助10
7秒前
科研通AI5应助nalan采纳,获得10
8秒前
小林完成签到 ,获得积分10
9秒前
9秒前
lieditongxu发布了新的文献求助10
9秒前
拼搏的潘子完成签到 ,获得积分10
9秒前
10秒前
李知恩发布了新的文献求助10
10秒前
默认用户名完成签到,获得积分10
11秒前
NexusExplorer应助泥花采纳,获得10
12秒前
12秒前
紫菜完成签到,获得积分10
13秒前
温暖以蓝关注了科研通微信公众号
13秒前
p8793428完成签到,获得积分10
13秒前
王小志完成签到,获得积分10
13秒前
zc19891130发布了新的文献求助10
13秒前
嘻嘻完成签到,获得积分20
13秒前
Z小姐完成签到 ,获得积分10
14秒前
14秒前
15秒前
CD完成签到,获得积分10
15秒前
眯眯眼的衬衫应助燕玲采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794