Weighted gene co‐expression network analysis and machine learning identified the lipid metabolism‐related gene LGMN as a novel biomarker for keloid

瘢痕疙瘩 生物标志物 基因表达 免疫系统 基因 脂质代谢 生物 计算生物学 医学 免疫学 遗传学 病理 生物化学
作者
Qirui Wang,Xingtai Huang,Siyi Zeng,Renpeng Zhou,Danru Wang
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (1) 被引量:5
标识
DOI:10.1111/exd.14974
摘要

Abstract The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism‐related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co‐expression network analysis (WGCNA) and the lipid metabolism‐related genes (LMGs). Then, three learning machine algorithms (SVM‐RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein–protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response‐related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2‐type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT‐PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖ge完成签到,获得积分20
刚刚
刚刚
1秒前
狂暴战士完成签到 ,获得积分10
1秒前
求助人员发布了新的文献求助10
1秒前
poco完成签到 ,获得积分10
2秒前
咕噜仔发布了新的文献求助10
2秒前
3秒前
乐观半梅完成签到,获得积分20
3秒前
NICAI应助zeal采纳,获得20
4秒前
SSS完成签到 ,获得积分10
5秒前
天天快乐应助光轮2000采纳,获得10
5秒前
chf102完成签到,获得积分10
5秒前
pnxl4664发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
8秒前
lllll07发布了新的文献求助10
8秒前
NexusExplorer应助sakdjfkasdf采纳,获得10
8秒前
8秒前
马冬梅完成签到 ,获得积分10
9秒前
9秒前
LIUDEHUA发布了新的文献求助10
10秒前
11秒前
骜111完成签到,获得积分10
11秒前
陈功城发布了新的文献求助10
11秒前
12秒前
英勇雨莲发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
allen完成签到,获得积分10
15秒前
larmes发布了新的文献求助30
16秒前
可爱的函函应助LIUDEHUA采纳,获得10
19秒前
20秒前
意识难防滑完成签到,获得积分10
21秒前
2024发布了新的文献求助30
21秒前
乐乐应助小白采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545351
求助须知:如何正确求助?哪些是违规求助? 4631357
关于积分的说明 14620547
捐赠科研通 4573019
什么是DOI,文献DOI怎么找? 2507284
邀请新用户注册赠送积分活动 1484116
关于科研通互助平台的介绍 1455352