Weighted gene co‐expression network analysis and machine learning identified the lipid metabolism‐related gene LGMN as a novel biomarker for keloid

瘢痕疙瘩 生物标志物 基因表达 免疫系统 基因 脂质代谢 生物 计算生物学 医学 免疫学 遗传学 病理 生物化学
作者
Qirui Wang,Xingtai Huang,Siyi Zeng,Renpeng Zhou,Danru Wang
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (1) 被引量:3
标识
DOI:10.1111/exd.14974
摘要

Abstract The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism‐related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co‐expression network analysis (WGCNA) and the lipid metabolism‐related genes (LMGs). Then, three learning machine algorithms (SVM‐RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein–protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response‐related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2‐type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT‐PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱静静应助77采纳,获得10
1秒前
2秒前
3秒前
萧水白应助Lyn采纳,获得10
3秒前
binbin完成签到,获得积分10
3秒前
4秒前
4秒前
hu完成签到,获得积分10
4秒前
shizi发布了新的文献求助10
5秒前
Lucas应助清新的静枫采纳,获得10
6秒前
6秒前
乐乐应助风中的碧空采纳,获得10
8秒前
9秒前
萧水白应助Kagome采纳,获得10
9秒前
活泼元瑶发布了新的文献求助10
9秒前
漂亮白云发布了新的文献求助10
10秒前
zbclzf发布了新的文献求助100
10秒前
王苏完成签到 ,获得积分10
13秒前
jennica完成签到,获得积分10
13秒前
13秒前
srf0602.发布了新的文献求助10
13秒前
22222发布了新的文献求助10
14秒前
徐徐徐完成签到,获得积分10
14秒前
14秒前
昏睡的南霜完成签到 ,获得积分10
15秒前
15秒前
15秒前
安详的玲发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
科研通AI2S应助完美的海秋采纳,获得10
18秒前
风中书易发布了新的文献求助10
18秒前
18秒前
happysalt发布了新的文献求助10
19秒前
天天快乐应助活泼元瑶采纳,获得10
19秒前
19秒前
aaa应助北辰以德采纳,获得10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243751
求助须知:如何正确求助?哪些是违规求助? 2887588
关于积分的说明 8249165
捐赠科研通 2556263
什么是DOI,文献DOI怎么找? 1384394
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794