Predicting Drug-Protein Interactions by Self-Adaptively Adjusting the Topological Structure of the Heterogeneous Network

计算机科学 药物重新定位 图形 代表(政治) 异构网络 机器学习 数据挖掘 人工智能 拓扑(电路) 理论计算机科学 药品 数学 医学 精神科 组合数学 无线网络 政治 电信 法学 无线 政治学
作者
Rong Tang,Chang Sun,Jipeng Huang,Minglei Li,Jinmao Wei,Jian Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5675-5684 被引量:1
标识
DOI:10.1109/jbhi.2023.3312374
摘要

Many powerful computational methods based on graph neural networks (GNNs) have been proposed to predict drug-protein interactions (DPIs). It can effectively reduce laboratory workload and the cost of drug discovery and drug repurposing. However, many clinical functions of drugs and proteins are unknown due to their unobserved indications. Therefore, it is difficult to establish a reliable drug-protein heterogeneous network that can describe the relationships between drugs and proteins based on the available information. To solve this problem, we propose a DPI prediction method that can self-adaptively adjust the topological structure of the heterogeneous networks, and name it SATS. SATS establishes a representation learning module based on graph attention network to carry out the drug-protein heterogeneous network. It can self-adaptively learn the relationships among the nodes based on their attributes and adjust the topological structure of the network according to the training loss of the model. Finally, SATS predicts the interaction propensity between drugs and proteins based on their embeddings. The experimental results show that SATS can effectively improve the topological structure of the network. The performance of SATS outperforms several state-of-the-art DPI prediction methods under various evaluation metrics. These prove that SATS is useful to deal with incomplete data and unreliable networks. The case studies on the top section of the prediction results further demonstrate that SATS is powerful for discovering novel DPIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
stt发布了新的文献求助10
1秒前
小蘑菇应助杏花饼采纳,获得10
1秒前
海棠yiyi发布了新的文献求助50
1秒前
camellia完成签到 ,获得积分10
2秒前
2秒前
2秒前
田様应助柠木采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
3秒前
3秒前
3秒前
威武的万仇完成签到 ,获得积分10
4秒前
迷路的水彤完成签到 ,获得积分10
4秒前
千里发布了新的文献求助10
4秒前
jogrgr完成签到,获得积分10
4秒前
夯大力完成签到,获得积分10
4秒前
啊娴仔完成签到,获得积分10
5秒前
5秒前
5秒前
韭菜发布了新的文献求助10
5秒前
Harlotte发布了新的文献求助20
6秒前
思源应助系统提示采纳,获得10
6秒前
蜡笔发布了新的文献求助30
6秒前
宋嬴一发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
HYLynn应助hetao286采纳,获得10
8秒前
10秒前
10秒前
夯大力发布了新的文献求助10
10秒前
10秒前
11秒前
自觉沛芹完成签到,获得积分10
11秒前
YukiXu完成签到 ,获得积分10
11秒前
11秒前
桐桐应助SXM采纳,获得10
12秒前
波特卡斯D艾斯完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740